Bibliographic Details
| Title: |
Advanced Persistent Threat attack targeting modern 5G Indus-trial Control System. A case study. |
| Alternate Title: |
Zaawansowany atak typu Persistent Threat (zagrożenie długotrwałe) wymierzony w nowoczesny system sterowania przemysłowego 5G – Studium przypadku. (Polish) |
| Authors: |
BEREZIŃSKI, Przemysław, RACHWALIK, Tomasz, KOSMOWSKI, Krzysztof |
| Source: |
Przegląd Elektrotechniczny; 2025, Issue 10, p202-213, 12p |
| Subject Terms: |
5G networks, SUPERVISORY control & data acquisition systems, INDUSTRIAL controls manufacturing, ANOMALY detection (Computer security), INTERNET security, CYBER physical systems, CYBERTERRORISM |
| Abstract (English): |
A case study based on an original scenario involving a multistage attack on a power substation is presented. The attack exploits vulnerabilities in SCADA systems, IIoT, and 5G networks. A testbed using real equipment commonly found in medium-voltage power stations was developed, and attacks on SCADA systems integrated with 5G technology were demonstrated. Effective detection and mitigation require a comprehensive strategy. Therefore, an approach combining signature-based IDS/ IPS with proprietary anomaly detection mechanisms is proposed. [ABSTRACT FROM AUTHOR] |
| Abstract (Polish): |
Przedstawiono studium przypadku oparte na scenariuszu obejmującym wieloetapowy atak na podstację energetyczną. Wykorzystuje on luki w zabezpieczeniach systemów SCADA, IIoT i sieci 5G. Opracowano stanowisko testowe z wykorzystaniem rzeczywistego sprzętu spotykanego w stacjach energetycznych i zademonstrowano ataki w systemach SCADA zintegrowanych z technologią 5G. Skuteczne wykrywanie i mitygacja wymagają kompleksowej strategii. Dlatego zaproponowano podejście oparte na sygnaturach IDS/IPS połączone z mechanizmami wykrywania anomalii. [ABSTRACT FROM AUTHOR] |
|
Copyright of Przegląd Elektrotechniczny is the property of Wydawnictwo SIGMA-NOT and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
| Database: |
Complementary Index |