Microstructural and XRD Investigations on Zn After Plastic Deformation.

Uložené v:
Podrobná bibliografia
Názov: Microstructural and XRD Investigations on Zn After Plastic Deformation.
Autori: Ceci, Alessandra, Costanza, Girolamo, Tata, Maria Elisa
Zdroj: Crystals (2073-4352); Oct2025, Vol. 15 Issue 10, p908, 10p
Predmety: X-ray diffraction, ZINC, DISLOCATION density, MATERIALS compression testing, CRYSTAL orientation, MATERIAL plasticity, TENSILE tests, MICROSTRUCTURE
Abstrakt: This work presents a microstructural analysis and X-ray diffraction (XRD) investigation of the plastic deformation in commercially pure, single-phase hexagonal close-packed (hcp) Zn subjected to rolling and tensile tests up to failure. Samples were examined by optical microscope and XRD; hardness was assessed by Vickers microhardness. High-resolution diffraction profiles with Kα1/Kα2 deconvolution were used to identify deformation-induced texture and to estimate the dislocation density. Results show that rolling (40% thickness reduction) and tensile test change texture and cause peak shifts and broadening, with corresponding microstructural changes. Microhardness changes from 28–45 HV (annealed) to 30–50 HV after deformation. After rolling, the texture (002) is the most intense reflection and (004) increases without significant angular shifts. Tensile tests induce low-angle shifts of (101) and (004), as well as selective texture changes (appearance of (103) and (110)). The (101) full width at half maximum increases from β(2θ) = 0.115° (annealed) to 0.160° (rolled) and 0.140° (after tensile test), yielding dislocation densities from 2.73 × 106 cm−2 (annealed) to 3.03 × 1011 cm−2 (rolled) and 3.38 × 1010 cm−2 (after tensile test). Finally, this study quantifies the XRD parameters (full width at half maximum, angular shifts and dislocation density). Plastic deformation of pure Zn leads to significant microstructural changes, including grain refinement, the generation of dislocations, and the formation of new crystallographic orientations, which are then observable in XRD patterns as peak broadening, shifts, and texture development. The severity of these effects depends on the level of deformation. [ABSTRACT FROM AUTHOR]
Copyright of Crystals (2073-4352) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Databáza: Complementary Index
Popis
Abstrakt:This work presents a microstructural analysis and X-ray diffraction (XRD) investigation of the plastic deformation in commercially pure, single-phase hexagonal close-packed (hcp) Zn subjected to rolling and tensile tests up to failure. Samples were examined by optical microscope and XRD; hardness was assessed by Vickers microhardness. High-resolution diffraction profiles with Kα1/Kα2 deconvolution were used to identify deformation-induced texture and to estimate the dislocation density. Results show that rolling (40% thickness reduction) and tensile test change texture and cause peak shifts and broadening, with corresponding microstructural changes. Microhardness changes from 28–45 HV (annealed) to 30–50 HV after deformation. After rolling, the texture (002) is the most intense reflection and (004) increases without significant angular shifts. Tensile tests induce low-angle shifts of (101) and (004), as well as selective texture changes (appearance of (103) and (110)). The (101) full width at half maximum increases from β(2θ) = 0.115° (annealed) to 0.160° (rolled) and 0.140° (after tensile test), yielding dislocation densities from 2.73 × 10<sup>6</sup> cm<sup>−2</sup> (annealed) to 3.03 × 10<sup>11</sup> cm<sup>−2</sup> (rolled) and 3.38 × 10<sup>10</sup> cm<sup>−2</sup> (after tensile test). Finally, this study quantifies the XRD parameters (full width at half maximum, angular shifts and dislocation density). Plastic deformation of pure Zn leads to significant microstructural changes, including grain refinement, the generation of dislocations, and the formation of new crystallographic orientations, which are then observable in XRD patterns as peak broadening, shifts, and texture development. The severity of these effects depends on the level of deformation. [ABSTRACT FROM AUTHOR]
ISSN:20734352
DOI:10.3390/cryst15100908