FALS-YOLO: An Efficient and Lightweight Method for Automatic Brain Tumor Detection and Segmentation.

Uloženo v:
Podrobná bibliografie
Název: FALS-YOLO: An Efficient and Lightweight Method for Automatic Brain Tumor Detection and Segmentation.
Autoři: Sun, Liyan, Zheng, Linxuan, Xin, Yi
Zdroj: Sensors (14248220); Oct2025, Vol. 25 Issue 19, p5993, 26p
Témata: BRAIN tumors, IMAGE segmentation, DETECTION algorithms, IMAGE processing, MAGNETIC resonance imaging, OBJECT recognition (Computer vision), MACHINE learning
Abstrakt: Brain tumors are highly malignant diseases that severely threaten the nervous system and patients' lives. MRI is a core technology for brain tumor diagnosis and treatment due to its high resolution and non-invasiveness. However, existing YOLO-based models face challenges in brain tumor MRI image detection and segmentation, such as insufficient multi-scale feature extraction and high computational resource consumption. This paper proposes an improved lightweight brain tumor detection and instance segmentation model named FALS-YOLO, based on YOLOv8n-Seg and integrating three key modules: FLRDown, AdaSimAM, and LSCSHN. FLRDown enhances multi-scale tumor perception, AdaSimAM suppresses noise and improves feature fusion, and LSCSHN achieves high-precision segmentation with reduced parameters and computational burden. Experiments on the tumor-otak dataset show that FALS-YOLO achieves Precision (B) of 0.892, Recall (B) of 0.858, mAP@0.5 (B) of 0.912 in detection, and Precision (M) of 0.899, Recall (M) of 0.863, mAP@0.5 (M) of 0.917 in segmentation, outperforming YOLOv5n-Seg, YOLOv8n-Seg, YOLOv9s-Seg, YOLOv10n-Seg and YOLOv11n-Seg. Compared with YOLOv8n-Seg, FALS-YOLO reduces parameters by 31.95%, computational amount by 20.00%, and model size by 32.31%. It provides an efficient, accurate and practical solution for the automatic detection and instance segmentation of brain tumors in resource-limited environments. [ABSTRACT FROM AUTHOR]
Copyright of Sensors (14248220) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Databáze: Complementary Index
Popis
Abstrakt:Brain tumors are highly malignant diseases that severely threaten the nervous system and patients' lives. MRI is a core technology for brain tumor diagnosis and treatment due to its high resolution and non-invasiveness. However, existing YOLO-based models face challenges in brain tumor MRI image detection and segmentation, such as insufficient multi-scale feature extraction and high computational resource consumption. This paper proposes an improved lightweight brain tumor detection and instance segmentation model named FALS-YOLO, based on YOLOv8n-Seg and integrating three key modules: FLRDown, AdaSimAM, and LSCSHN. FLRDown enhances multi-scale tumor perception, AdaSimAM suppresses noise and improves feature fusion, and LSCSHN achieves high-precision segmentation with reduced parameters and computational burden. Experiments on the tumor-otak dataset show that FALS-YOLO achieves Precision (B) of 0.892, Recall (B) of 0.858, mAP@0.5 (B) of 0.912 in detection, and Precision (M) of 0.899, Recall (M) of 0.863, mAP@0.5 (M) of 0.917 in segmentation, outperforming YOLOv5n-Seg, YOLOv8n-Seg, YOLOv9s-Seg, YOLOv10n-Seg and YOLOv11n-Seg. Compared with YOLOv8n-Seg, FALS-YOLO reduces parameters by 31.95%, computational amount by 20.00%, and model size by 32.31%. It provides an efficient, accurate and practical solution for the automatic detection and instance segmentation of brain tumors in resource-limited environments. [ABSTRACT FROM AUTHOR]
ISSN:14248220
DOI:10.3390/s25195993