Soil Quality Assessment for Sustainable Management: A Minimum Dataset for Long-Term Fertilization in Subtropical Plantations in South China.

Saved in:
Bibliographic Details
Title: Soil Quality Assessment for Sustainable Management: A Minimum Dataset for Long-Term Fertilization in Subtropical Plantations in South China.
Authors: Peng, Jiani, Mao, Qinggong, Wang, Senhao, Mao, Sichen, Zhang, Baixin, Zheng, Mianhai, Huang, Juan, Mo, Jiangming, Tan, Xiangping, Zhang, Wei
Source: Forests (19994907); Sep2025, Vol. 16 Issue 9, p1435, 22p
Subject Terms: SOIL quality, SUSTAINABILITY, FERTIGATION, FOREST ecology, TROPICAL ecosystems, SCIENTIFIC observation
Geographic Terms: SOUTHEAST China
Abstract: Restoration plantations in subtropical regions, often established with fast-growing tree species such as Acacia auriculiformis A. Cunn. ex Benth and Eucalyptus urophylla S. T. Blake, are frequently developed on highly weathered soils characterized by phosphorus deficiency. To investigate strategies for mitigating nutrient imbalances in such ecosystems, a long-term (≥13 years) fertilization experiment was designed. The experiment involved three fertilization regimes: nitrogen fertilizer alone (N), phosphorus fertilizer alone (P), and a combination of nitrogen and phosphorus (NP) fertilizers. The objective of this study was to investigate the effects of long-term fertilization practices on soil quality in subtropical plantations using a soil quality index (SQI). Consequently, all conventional soil physical, chemical, and biological indicators associated with the SQI responses to long-term fertilization treatments were systematically evaluated, and a principal component analysis (PCA) was conducted, along with a literature review, to develop a minimum dataset (MDS) for calculating the SQI. Three physical indicators (silt, clay, and soil water content), three chemical indicators (soil organic carbon, inorganic nitrogen, and total phosphorus), and two biological indicators (microbial biomass carbon and phosphodiesterase enzyme activity) were finally chosen for the MDS from a total dataset (TDS) of eighteen soil indicators. This study shows that the MDS provided a strong representation of the TDS data (R2 = 0.81), and the SQI was positively correlated with litter mass (R2 = 0.37). An analysis of individual soil indicators in the MDS revealed that phosphorus addition through fertilization (P and NP treatments) significantly enhanced the soil phosphorus pool (64–101%) in the subtropical plantation ecosystem. Long-term fertilization did not significantly change the soil quality, as measured using the SQI, in either the Acacia auriculiformis (p = 0.25) or Eucalyptus urophylla (p = 0.45) plantation, and no significant differences were observed between the two plantation types. These findings suggest that the MDS can serve as a quantitative and effective tool for long-term soil quality monitoring during the process of forest sustainable management. [ABSTRACT FROM AUTHOR]
Copyright of Forests (19994907) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Be the first to leave a comment!
You must be logged in first