Combined Dataset System Based on a Hybrid PCA–Transformer Model for Effective Intrusion Detection Systems.
Saved in:
| Title: | Combined Dataset System Based on a Hybrid PCA–Transformer Model for Effective Intrusion Detection Systems. |
|---|---|
| Authors: | Kamal, Hesham, Mashaly, Maggie |
| Source: | AI; Aug2025, Vol. 6 Issue 8, p168, 42p |
| Subject Terms: | INTRUSION detection systems (Computer security), MACHINE learning, CYBERTERRORISM, COMPUTER network security, FEATURE selection, DIMENSIONAL reduction algorithms |
| Abstract: | With the growing number and diversity of network attacks, traditional security measures such as firewalls and data encryption are no longer sufficient to ensure robust network protection. As a result, intrusion detection systems (IDSs) have become a vital component in defending against evolving cyber threats. Although many modern IDS solutions employ machine learning techniques, they often suffer from low detection rates and depend heavily on manual feature engineering. Furthermore, most IDS models are designed to identify only a limited set of attack types, which restricts their effectiveness in practical scenarios where a network may be exposed to a wide array of threats. To overcome these limitations, we propose a novel approach to IDSs by implementing a combined dataset framework based on an enhanced hybrid principal component analysis–Transformer (PCA–Transformer) model, capable of detecting 21 unique classes, comprising 1 benign class and 20 distinct attack types across multiple datasets. The proposed architecture incorporates enhanced preprocessing and feature engineering, followed by the vertical concatenation of the CSE-CIC-IDS2018 and CICIDS2017 datasets. In this design, the PCA component is responsible for feature extraction and dimensionality reduction, while the Transformer component handles the classification task. Class imbalance was addressed using class weights, adaptive synthetic sampling (ADASYN), and edited nearest neighbors (ENN). Experimental results show that the model achieves 99.80% accuracy for binary classification and 99.28% for multi-class classification on the combined dataset (CSE-CIC-IDS2018 and CICIDS2017), 99.66% accuracy for binary classification and 99.59% for multi-class classification on the CSE-CIC-IDS2018 dataset, 99.75% accuracy for binary classification and 99.51% for multi-class classification on the CICIDS2017 dataset, and 99.98% accuracy for binary classification and 98.01% for multi-class classification on the NF-BoT-IoT-v2 dataset, significantly outperforming existing approaches by distinguishing a wide range of classes, including benign and various attack types, within a unified detection framework. [ABSTRACT FROM AUTHOR] |
| Copyright of AI is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) | |
| Database: | Complementary Index |
Be the first to leave a comment!
Full Text Finder
Nájsť tento článok vo Web of Science