NRNH-AR: A Small Robotic Agent Using Tri-Fold Learning for Navigation and Obstacle Avoidance.

Uloženo v:
Podrobná bibliografie
Název: NRNH-AR: A Small Robotic Agent Using Tri-Fold Learning for Navigation and Obstacle Avoidance.
Autoři: Vasquez-Jalpa, Carlos, Nakano, Mariko, Velasco-Villa, Martin, Lopez-Garcia, Osvaldo
Zdroj: Applied Sciences (2076-3417); Aug2025, Vol. 15 Issue 15, p8149, 20p
Témata: NAVIGATION, OBSTACLE avoidance (Robotics), REINFORCEMENT learning, AUTOMATICITY (Learning process), MACHINE learning, COMPUTER vision, INTELLIGENT agents
Abstrakt: We propose a tri-fold learning algorithm, called Neuroevolution of Hybrid Neural Networks in a Robotic Agent (acronym in Spanish, NRNH-AR), based on deep reinforcement learning (DRL), with self-supervised learning (SSL) and unsupervised learning (USL) steps, specifically designed to be implemented in a small autonomous navigation robot capable of operating in constrained physical environments. The NRNH-AR algorithm is designed for a small physical robotic agent with limited resources. The proposed algorithm was evaluated in four critical aspects: computational cost, learning stability, required memory size, and operation speed. The results obtained show that the performance of NRNH-AR is within the ranges of the Deep Q Network (DQN), Deep Deterministic Policy Gradient (DDPG), and Twin Delayed Deep Deterministic Policy Gradient (TD3). The proposed algorithm comprises three types of learning algorithms: SSL, USL, and DRL. Thanks to the series of learning algorithms, the proposed algorithm optimizes the use of resources and demonstrates adaptability in dynamic environments, a crucial aspect of navigation robotics. By integrating computer vision techniques based on a Convolutional Neuronal Network (CNN), the algorithm enhances its abilities to understand visual observations of the environment rapidly and detect a specific object, avoiding obstacles. [ABSTRACT FROM AUTHOR]
Copyright of Applied Sciences (2076-3417) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Databáze: Complementary Index
Popis
Abstrakt:We propose a tri-fold learning algorithm, called Neuroevolution of Hybrid Neural Networks in a Robotic Agent (acronym in Spanish, NRNH-AR), based on deep reinforcement learning (DRL), with self-supervised learning (SSL) and unsupervised learning (USL) steps, specifically designed to be implemented in a small autonomous navigation robot capable of operating in constrained physical environments. The NRNH-AR algorithm is designed for a small physical robotic agent with limited resources. The proposed algorithm was evaluated in four critical aspects: computational cost, learning stability, required memory size, and operation speed. The results obtained show that the performance of NRNH-AR is within the ranges of the Deep Q Network (DQN), Deep Deterministic Policy Gradient (DDPG), and Twin Delayed Deep Deterministic Policy Gradient (TD3). The proposed algorithm comprises three types of learning algorithms: SSL, USL, and DRL. Thanks to the series of learning algorithms, the proposed algorithm optimizes the use of resources and demonstrates adaptability in dynamic environments, a crucial aspect of navigation robotics. By integrating computer vision techniques based on a Convolutional Neuronal Network (CNN), the algorithm enhances its abilities to understand visual observations of the environment rapidly and detect a specific object, avoiding obstacles. [ABSTRACT FROM AUTHOR]
ISSN:20763417
DOI:10.3390/app15158149