Podrobná bibliografie
| Název: |
The accuracy-bias trade-offs in AI text detection tools and their impact on fairness in scholarly publication. |
| Autoři: |
Pratama, Ahmad R. |
| Zdroj: |
PeerJ Computer Science; Jun2025, p1-27, 27p |
| Témata: |
SCHOLARLY publishing, RESEARCH ethics |
| Abstrakt: |
Artificial intelligence (AI) text detection tools are considered a means of preserving the integrity of scholarly publication by identifying whether a text is written by humans or generated by AI. This study evaluates three popular tools (GPTZero, ZeroGPT, and DetectGPT) through two experiments: first, distinguishing human-written abstracts from those generated by ChatGPT o1 and Gemini 2.0 Pro Experimental; second, evaluating AI-assisted abstracts where the original text has been enhanced by these large language models (LLMs) to improve readability. Results reveal notable trade-offs in accuracy and bias, disproportionately affecting non-native speakers and certain disciplines. This study highlights the limitations of detection-focused approaches and advocates a shift toward ethical, responsible, and transparent use of LLMs in scholarly publication. [ABSTRACT FROM AUTHOR] |
|
Copyright of PeerJ Computer Science is the property of PeerJ Inc. and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
| Databáze: |
Complementary Index |