Bibliographic Details
| Title: |
Economic Model Predictive Control for Wastewater Treatment Processes Based on Global Maximum Error POD-TPWL. |
| Authors: |
Wang, Zhiyu, Zeng, Jing, Liu, Jinfeng |
| Source: |
Mathematics (2227-7390); May2025, Vol. 13 Issue 10, p1674, 19p |
| Subject Terms: |
PROPER orthogonal decomposition, SEWAGE disposal plants, EFFLUENT quality, WASTEWATER treatment, ECONOMIC models |
| Abstract: |
To address the challenge of low computational efficiency in nonlinear Economic Model Predictive Control (EMPC) for large-scale systems such as wastewater treatment plants (WWTPs), this paper proposes a Trajectory Piecewise Linearization (TPWL)-based EMPC framework integrated with global maximum error control (GMEC) and Proper Orthogonal Decomposition (POD). The TPWL method constructs a reduced-order model framework, while GMEC iteratively refines the linearization point selection process. A two-stage strategy is employed: first, coarse selection of candidate linearization points along the original nonlinear model's state trajectory based on Euclidean distance, followed by refinement to determine optimal points that minimize global approximation errors. Simulation results demonstrate that the proposed method reduces computational time by at least 65% under identical weather conditions while maintaining effluent quality and total cost indices within acceptable thresholds. Compared with conventional TPWL-POD approaches, this framework achieves higher model accuracy and superior EMPC control performance. These advancements underscore the method's potential for real-time implementation in complex industrial systems, balancing computational efficiency with control precision. Additionally, the framework's modular design enables integration with existing optimization techniques to further reduce computational complexity without compromising effluent quality compliance. [ABSTRACT FROM AUTHOR] |
|
Copyright of Mathematics (2227-7390) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
| Database: |
Complementary Index |