Bibliographic Details
| Title: |
ITER: Iterative Neural Repair for Multi-Location Patches. |
| Authors: |
Ye, He, Monperrus, Martin |
| Source: |
ICSE: International Conference on Software Engineering; 2024, p1-13, 13p |
| Subject Terms: |
NEURAL circuitry, OPEN source software, JAVA programming language, ARTIFICIAL neural networks, DEBUGGING |
| Abstract: |
Automated program repair (APR) has achieved promising results, especially using neural networks. Yet, the overwhelming majority of patches produced by APR tools are confined to one single location. When looking at the patches produced with neural repair, most of them fail to compile, while a few uncompilable ones go in the right direction. In both cases, the fundamental problem is to ignore the potential of partial patches. In this paper, we propose an iterative program repair paradigm called ITER founded on the concept of improving partial patches until they become plausible and correct. First, ITER iteratively improves partial single-location patches by fixing compilation errors and further refining the previously generated code. Second, ITER iteratively improves partial patches to construct multi-location patches, with fault localization re-execution. ITER is implemented for Java based on battle-proven deep neural networks and code representation. ITER is evaluated on 476 bugs from 10 open-source projects in Defects4J 2.0. ITER succeeds in repairing 15.5% of them, including 9 uniquely repaired multi-location bugs. [ABSTRACT FROM AUTHOR] |
|
Copyright of ICSE: International Conference on Software Engineering is the property of Association for Computing Machinery and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
| Database: |
Complementary Index |