Podrobná bibliografie
| Název: |
New Fault-Tolerant Sensorless Control of FPFTPM Motor Based on Hybrid Adaptive Robust Observation for Electric Agricultural Equipment Applications. |
| Autoři: |
Pei, Zifeng, Zhang, Li, Fu, Haijun, Wang, Yucheng |
| Zdroj: |
Energies (19961073); Apr2025, Vol. 18 Issue 8, p1962, 21p |
| Témata: |
FAULT-tolerant control systems, ELECTRIC motors, PHASE-locked loops, AGRICULTURAL equipment, ELECTRIC equipment, FAULT-tolerant computing |
| Abstrakt: |
This paper proposes a hybrid adaptive robust observation (HARO)-based sensorless control strategy of a five-phase fault-tolerant permanent-magnet (FPFTPM) motor for electric agricultural equipment applications under various operating conditions, including fault conditions. Regarding fault-tolerant sensorless control, the existing studies usually treat fault-tolerant control and sensorless control as two independent units rather than a unified system, which makes the algorithm complex. In addition, under the traditional fault-tolerant algorithm, the system needs to switch after diagnosis when the fault occurs, which leads to a degraded sensorless control performance. Hence, this paper proposes a fault-tolerant sensorless control strategy that can achieve the whole speed range without fault-tolerant switching. At zero/low speed, a disturbance adaptive controller (DAC) architecture is developed by treating phase faults as system disturbances, where robust controllers and extended state observer (ESO) collaboratively suppress speed and position errors. At medium/high speeds, this paper provides a steady-healthy SMO, which combines the enhanced observer and universal phase-locked loop (PLL) without phase compensation. With above designs, the proposed strategy can significantly improve the estimated accuracy of rotor position under normal conditions and fault circumstances, while simplifying the complexity of the fault-tolerant sensorless algorithm. Furthermore, the proposed strategy is verified based on the experimental platform of the FPFTPM motor drive system. The experimental results show that compared with the traditional method, the torque ripple and position error are reduced by nearly 20% and 60%, respectively, at zero-low speed and medium-high speed, and the torque ripple is reduced by 55% during fault operation, which verifies the robustness and effectiveness of the proposed method. [ABSTRACT FROM AUTHOR] |
|
Copyright of Energies (19961073) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
| Databáze: |
Complementary Index |