Optimizing Bi-LSTM networks for improved lung cancer detection accuracy.

Saved in:
Bibliographic Details
Title: Optimizing Bi-LSTM networks for improved lung cancer detection accuracy.
Authors: Diao, Su, Wan, Yajie, Huang, Danyi, Huang, Shijia, Sadiq, Touseef, Khan, Mohammad Shahbaz, Hussain, Lal, Alkahtani, Badr S., Mazhar, Tehseen
Source: PLoS ONE; 2/24/2025, Vol. 20 Issue 2, p1-24, 24p
Subject Terms: MACHINE learning, LONG short-term memory, LUNG cancer, COMPUTER-aided diagnosis, EARLY detection of cancer, DEEP learning
Abstract: Lung cancer remains a leading cause of cancer-related deaths worldwide, with low survival rates often attributed to late-stage diagnosis. To address this critical health challenge, researchers have developed computer-aided diagnosis (CAD) systems that rely on feature extraction from medical images. However, accurately identifying the most informative image features for lung cancer detection remains a significant challenge. This study aimed to compare the effectiveness of both hand-crafted and deep learning-based approaches for lung cancer diagnosis. We employed traditional hand-crafted features, such as Gray Level Co-occurrence Matrix (GLCM) features, in conjunction with traditional machine learning algorithms. To explore the potential of deep learning, we also optimized and implemented a Bidirectional Long Short-Term Memory (Bi-LSTM) network for lung cancer detection. The results revealed that the highest performance using hand-crafted features was achieved by extracting GLCM features and utilizing Support Vector Machine (SVM) with different kernels, reaching an accuracy of 99.78% and an AUC of 0.999. However, the deep learning Bi-LSTM network surpassed both methods, achieving an accuracy of 99.89% and an AUC of 1.0000. These findings suggest that the proposed methodology, combining hand-crafted features and deep learning, holds significant promise for enhancing early lung cancer detection and ultimately improving diagnosis systems. [ABSTRACT FROM AUTHOR]
Copyright of PLoS ONE is the property of Public Library of Science and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Description
Abstract:Lung cancer remains a leading cause of cancer-related deaths worldwide, with low survival rates often attributed to late-stage diagnosis. To address this critical health challenge, researchers have developed computer-aided diagnosis (CAD) systems that rely on feature extraction from medical images. However, accurately identifying the most informative image features for lung cancer detection remains a significant challenge. This study aimed to compare the effectiveness of both hand-crafted and deep learning-based approaches for lung cancer diagnosis. We employed traditional hand-crafted features, such as Gray Level Co-occurrence Matrix (GLCM) features, in conjunction with traditional machine learning algorithms. To explore the potential of deep learning, we also optimized and implemented a Bidirectional Long Short-Term Memory (Bi-LSTM) network for lung cancer detection. The results revealed that the highest performance using hand-crafted features was achieved by extracting GLCM features and utilizing Support Vector Machine (SVM) with different kernels, reaching an accuracy of 99.78% and an AUC of 0.999. However, the deep learning Bi-LSTM network surpassed both methods, achieving an accuracy of 99.89% and an AUC of 1.0000. These findings suggest that the proposed methodology, combining hand-crafted features and deep learning, holds significant promise for enhancing early lung cancer detection and ultimately improving diagnosis systems. [ABSTRACT FROM AUTHOR]
ISSN:19326203
DOI:10.1371/journal.pone.0316136