USVs Path Planning for Maritime Search and Rescue Based on POS-DQN: Probability of Success-Deep Q-Network.

Uloženo v:
Podrobná bibliografie
Název: USVs Path Planning for Maritime Search and Rescue Based on POS-DQN: Probability of Success-Deep Q-Network.
Autoři: Liu, Lu, Shan, Qihe, Xu, Qi
Zdroj: Journal of Marine Science & Engineering; Jul2024, Vol. 12 Issue 7, p1158, 19p
Témata: DEEP reinforcement learning, RESCUE work, AUTONOMOUS vehicles, PROBLEM solving, ALGORITHMS
Abstrakt: Efficient maritime search and rescue (SAR) is crucial for responding to maritime emergencies. In traditional SAR, fixed search path planning is inefficient and cannot prioritize high-probability regions, which has significant limitations. To solve the above problems, this paper proposes unmanned surface vehicles (USVs) path planning for maritime SAR based on POS-DQN so that USVs can perform SAR tasks reasonably and efficiently. Firstly, the search region is allocated as a whole using an improved task allocation algorithm so that the task region of each USV has priority and no duplication. Secondly, this paper considers the probability of success (POS) of the search environment and proposes a POS-DQN algorithm based on deep reinforcement learning. This algorithm can adapt to the complex and changing environment of SAR. It designs a probability weight reward function and trains USV agents to obtain the optimal search path. Finally, based on the simulation results, by considering the complete coverage of obstacle avoidance and collision avoidance, the search path using this algorithm can prioritize high-probability regions and improve the efficiency of SAR. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Marine Science & Engineering is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Databáze: Complementary Index
Buďte první, kdo okomentuje tento záznam!
Nejprve se musíte přihlásit.