Catch bond kinetics are instrumental to cohesion of fire ant rafts under load.

Saved in:
Bibliographic Details
Title: Catch bond kinetics are instrumental to cohesion of fire ant rafts under load.
Authors: Wagner, Robert J., Lamont, Samuel C., White, Zachary T., Vernerey, Franck J.
Source: Proceedings of the National Academy of Sciences of the United States of America; 4/23/2024, Vol. 121 Issue 17, p1-12, 47p
Subject Terms: FIRE ants, COHESION, CYCLIC loads, SMART materials, DISCONTINUOUS precipitation, FINANCIAL stress, MODULAR design
Abstract: Dynamic networks composed of constituents that break and reform bonds reversibly are ubiquitous in nature owing to their modular architectures that enable functions like energy dissipation, self-healing, and even activity. While bond breaking depends only on the current configuration of attachment in these networks, reattachment depends also on the proximity of constituents. Therefore, dynamic networks composed of macroscale constituents (not benefited by the secondary interactions cohering analogous networks composed of molecular-scale constituents) must rely on primary bonds for cohesion and self-repair. Toward understanding how such macroscale networks might adaptively achieve this, we explore the uniaxial tensile response of 2D rafts composed of interlinked fire ants (S. invicta). Through experiments and discrete numerical modeling, we find that ant rafts adaptively stabilize their bonded ant-to-ant interactions in response to tensile strains, indicating catch bond dynamics. Consequently, low-strain rates that should theoretically induce creep mechanics of these rafts instead induce elastic-like response. Our results suggest that this forcestabilization delays dissolution of the rafts and improves toughness. Nevertheless, above 35% strain low cohesion and stress localization cause nucleation and growth of voids whose coalescence patterns result from force-stabilization. These voids mitigate structural repair until initial raft densities are restored and ants can reconnect across defects. However mechanical recovery of ant rafts during cyclic loading suggests that--even upon reinstatement of initial densities--ants exhibit slower repair kinetics if they were recently loaded at faster strain rates. These results exemplify fire ants' status as active agents capable of memory-driven, stimuli-response for potential inspiration of adaptive structural materials. [ABSTRACT FROM AUTHOR]
Copyright of Proceedings of the National Academy of Sciences of the United States of America is the property of National Academy of Sciences and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Be the first to leave a comment!
You must be logged in first