Vulnerability detection in Java source code using a quantum convolutional neural network with self-attentive pooling, deep sequence, and graph-based hybrid feature extraction.
Saved in:
| Title: | Vulnerability detection in Java source code using a quantum convolutional neural network with self-attentive pooling, deep sequence, and graph-based hybrid feature extraction. |
|---|---|
| Authors: | Hussain, Shumaila, Nadeem, Muhammad, Baber, Junaid, Hamdi, Mohammed, Rajab, Adel, Al Reshan, Mana Saleh, Shaikh, Asadullah |
| Source: | Scientific Reports; 3/28/2024, Vol. 14 Issue 1, p1-17, 17p |
| Subject Terms: | CONVOLUTIONAL neural networks, DEEP learning, FEATURE extraction, SOURCE code, COMPUTER security vulnerabilities, FLOWGRAPHS |
| Abstract: | Software vulnerabilities pose a significant threat to system security, necessitating effective automatic detection methods. Current techniques face challenges such as dependency issues, language bias, and coarse detection granularity. This study presents a novel deep learning-based vulnerability detection system for Java code. Leveraging hybrid feature extraction through graph and sequence-based techniques enhances semantic and syntactic understanding. The system utilizes control flow graphs (CFG), abstract syntax trees (AST), program dependencies (PD), and greedy longest-match first vectorization for graph representation. A hybrid neural network (GCN-RFEMLP) and the pre-trained CodeBERT model extract features, feeding them into a quantum convolutional neural network with self-attentive pooling. The system addresses issues like long-term information dependency and coarse detection granularity, employing intermediate code representation and inter-procedural slice code. To mitigate language bias, a benchmark software assurance reference dataset is employed. Evaluations demonstrate the system's superiority, achieving 99.2% accuracy in detecting vulnerabilities, outperforming benchmark methods. The proposed approach comprehensively addresses vulnerabilities, including improper input validation, missing authorizations, buffer overflow, cross-site scripting, and SQL injection attacks listed by common weakness enumeration (CWE). [ABSTRACT FROM AUTHOR] |
| Copyright of Scientific Reports is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) | |
| Database: | Complementary Index |
Be the first to leave a comment!
Full Text Finder
Nájsť tento článok vo Web of Science