Bibliographische Detailangaben
| Titel: |
Title: experimental realisation of multi-qubit gates using electron paramagnetic resonance. |
| Autoren: |
Little, Edmund J., Mrozek, Jacob, Rogers, Ciarán J., Liu, Junjie, McInnes, Eric J. L., Bowen, Alice M., Ardavan, Arzhang, Winpenny, Richard E. P. |
| Quelle: |
Nature Communications; 11/2/2023, Vol. 14 Issue 1, p1-12, 12p |
| Schlagwörter: |
ELECTRON paramagnetic resonance, QUANTUM logic, QUANTUM computing, QUANTUM states, QUANTUM computers, HUMAN information processing |
| Abstract: |
Quantum information processing promises to revolutionise computing; quantum algorithms have been discovered that address common tasks significantly more efficiently than their classical counterparts. For a physical system to be a viable quantum computer it must be possible to initialise its quantum state, to realise a set of universal quantum logic gates, including at least one multi-qubit gate, and to make measurements of qubit states. Molecular Electron Spin Qubits (MESQs) have been proposed to fulfil these criteria, as their bottom-up synthesis should facilitate tuning properties as desired and the reproducible production of multi-MESQ structures. Here we explore how to perform a two-qubit entangling gate on a multi-MESQ system, and how to readout the state via quantum state tomography. We propose methods of accomplishing both procedures using multifrequency pulse Electron Paramagnetic Resonance (EPR) and apply them to a model MESQ structure consisting of two nitroxide spin centres. Our results confirm the methodological principles and shed light on the experimental hurdles which must be overcome to realise a demonstration of controlled entanglement on this system. Molecular electron spins are promising qubit candidates, however physical implementation of quantum gates is challenging. Little et al. explore the implementation of two-qubit entangling gates between nitroxide spin centres by pulsed electron paramagnetic resonance, building on NMR quantum computing protocols. [ABSTRACT FROM AUTHOR] |
|
Copyright of Nature Communications is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
| Datenbank: |
Complementary Index |