PSBF: p-adic Integer Scalable Bloom Filter.

Gespeichert in:
Bibliographische Detailangaben
Titel: PSBF: p-adic Integer Scalable Bloom Filter.
Autoren: Yi, Wenlong, Wang, Chuang, Xie, Qiliang, Zhao, Yingding, Jia, Jing
Quelle: Sensors (14248220); Sep2023, Vol. 23 Issue 18, p7775, 14p
Schlagwörter: PERFORMANCE standards, NUMBER theory, KALMAN filtering
Abstract: Given the challenges associated with the dynamic expansion of the conventional bloom filter's capacity, the prevalence of false positives, and the subpar access performance, this study employs the algebraic and topological characteristics of p-adic integers to introduce an innovative approach for dynamically expanding the p-adic Integer Scalable Bloom Filter (PSBF). The proposed method involves converting the target element into an integer using a string hash function, followed by the conversion of said integer into a p-adic integer through algebraic properties. This process automatically establishes the topological tree access structure of the PSBF. The experiment involved a comparison of access performance among the standard bloom filter, dynamic bloom filter, and scalable bloom filter. The findings indicate that the PSBF offers advantages such as avoidance of a linear storage structure, enhanced efficiency in element insertion and query, improved storage space utilization, and reduced likelihood of false positives. Consequently, the PSBF presents a novel approach to the dynamic extensibility of bloom filters. [ABSTRACT FROM AUTHOR]
Copyright of Sensors (14248220) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Datenbank: Complementary Index
Beschreibung
Abstract:Given the challenges associated with the dynamic expansion of the conventional bloom filter's capacity, the prevalence of false positives, and the subpar access performance, this study employs the algebraic and topological characteristics of p-adic integers to introduce an innovative approach for dynamically expanding the p-adic Integer Scalable Bloom Filter (PSBF). The proposed method involves converting the target element into an integer using a string hash function, followed by the conversion of said integer into a p-adic integer through algebraic properties. This process automatically establishes the topological tree access structure of the PSBF. The experiment involved a comparison of access performance among the standard bloom filter, dynamic bloom filter, and scalable bloom filter. The findings indicate that the PSBF offers advantages such as avoidance of a linear storage structure, enhanced efficiency in element insertion and query, improved storage space utilization, and reduced likelihood of false positives. Consequently, the PSBF presents a novel approach to the dynamic extensibility of bloom filters. [ABSTRACT FROM AUTHOR]
ISSN:14248220
DOI:10.3390/s23187775