Combining Sparse Approximate Factorizations with Mixed-precision Iterative Refinement.

Saved in:
Bibliographic Details
Title: Combining Sparse Approximate Factorizations with Mixed-precision Iterative Refinement.
Authors: AMESTOY, PATRICK, BUTTARI, ALFREDO, HIGHAM, NICHOLAS J., L'EXCELLENT, JEAN-YVES, MARY, THEO, VIEUBLÉ, BASTIEN
Source: ACM Transactions on Mathematical Software; Mar2023, Vol. 49 Issue 1, p1-29, 29p
Subject Terms: FACTORIZATION, ACCOUNTING methods, FLOATING-point arithmetic, SPARSE approximations, MUMPS
Abstract: The standard LU factorization-based solution process for linear systems can be enhanced in speed or accuracy by employing mixed-precision iterative refinement. Most recent work has focused on dense systems. We investigate the potential of mixed-precision iterative refinement to enhance methods for sparse systems based on approximate sparse factorizations. In doing so, we first develop a new error analysis for LU- and GMRES-based iterative refinement under a general model of LU factorization that accounts for the approximation methods typically used by modern sparse solvers, such as low-rank approximations or relaxed pivoting strategies. We then provide a detailed performance analysis of both the execution time and memory consumption of different algorithms, based on a selected set of iterative refinement variants and approximate sparse factorizations. Our performance study uses the multifrontal solver MUMPS, which can exploit block low-rank factorization and static pivoting. We evaluate the performance of the algorithms on large, sparse problems coming from a variety of real-life and industrial applications showing that mixed-precision iterative refinement combined with approximate sparse factorization can lead to considerable reductions of both the time and memory consumption. [ABSTRACT FROM AUTHOR]
Copyright of ACM Transactions on Mathematical Software is the property of Association for Computing Machinery and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Description
Abstract:The standard LU factorization-based solution process for linear systems can be enhanced in speed or accuracy by employing mixed-precision iterative refinement. Most recent work has focused on dense systems. We investigate the potential of mixed-precision iterative refinement to enhance methods for sparse systems based on approximate sparse factorizations. In doing so, we first develop a new error analysis for LU- and GMRES-based iterative refinement under a general model of LU factorization that accounts for the approximation methods typically used by modern sparse solvers, such as low-rank approximations or relaxed pivoting strategies. We then provide a detailed performance analysis of both the execution time and memory consumption of different algorithms, based on a selected set of iterative refinement variants and approximate sparse factorizations. Our performance study uses the multifrontal solver MUMPS, which can exploit block low-rank factorization and static pivoting. We evaluate the performance of the algorithms on large, sparse problems coming from a variety of real-life and industrial applications showing that mixed-precision iterative refinement combined with approximate sparse factorization can lead to considerable reductions of both the time and memory consumption. [ABSTRACT FROM AUTHOR]
ISSN:00983500
DOI:10.1145/3582493