Deep feature selection using local search embedded social ski-driver optimization algorithm for breast cancer detection in mammograms.

Gespeichert in:
Bibliographische Detailangaben
Titel: Deep feature selection using local search embedded social ski-driver optimization algorithm for breast cancer detection in mammograms.
Autoren: Pramanik, Payel, Mukhopadhyay, Souradeep, Mirjalili, Seyedali, Sarkar, Ram
Quelle: Neural Computing & Applications; Mar2023, Vol. 35 Issue 7, p5479-5499, 21p
Schlagwörter: MAMMOGRAMS, COMPUTER-aided diagnosis, EARLY detection of cancer, MATHEMATICAL optimization, EARLY diagnosis, METAHEURISTIC algorithms, FEATURE selection
Abstract: Breast cancer has become a common malignancy in women. However, early detection and identification of this disease can save many lives. As computer-aided detection helps radiologists in detecting abnormalities efficiently, researchers across the world are striving to develop reliable models to deal with. One of the common approaches to identifying breast cancer is through breast mammograms. However, the identification of malignant breasts from mass lesions is a challenging research problem. In the current work, we propose a method for the classification of breast mass using mammograms which consists of two main stages. At first, we extract deep features from the input mammograms using the well-known VGG16 model while incorporating an attention mechanism into this model. Next, we apply a meta-heuristic called Social Ski-Driver (SSD) algorithm embedded with Adaptive Beta Hill Climbing based local search to obtain an optimal features subset. The optimal features subset is fed to the K-nearest neighbors (KNN) classifier for the classification. The proposed model is demonstrated to be very useful for identifying and differentiating malignant and healthy breasts successfully. For experimentation, we evaluate our model on the digital database for screening mammography (DDSM) database and achieve 96.07% accuracy using only 25% of features extracted by the attention-aided VGG16 model. The Python code of our research work is publicly available at: https://github.com/Ppayel/BreastLocalSearchSSD. [ABSTRACT FROM AUTHOR]
Copyright of Neural Computing & Applications is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Datenbank: Complementary Index