A Comprehensive Survey on the Progress, Process, and Challenges of Lung Cancer Detection and Classification.

Uloženo v:
Podrobná bibliografie
Název: A Comprehensive Survey on the Progress, Process, and Challenges of Lung Cancer Detection and Classification.
Autoři: Mridha, M. F., Prodeep, Akibur Rahman, Hoque, A. S. M. Morshedul, Islam, Md. Rashedul, Lima, Aklima Akter, Kabir, Muhammad Mohsin, Hamid, Md. Abdul, Watanobe, Yutaka
Zdroj: Journal of Healthcare Engineering; 12/16/2022, p1-43, 43p
Témata: LUNG cancer, TUMOR classification, COMPUTER-aided diagnosis, MAGNETIC resonance imaging, FEATURE extraction, COMPUTED tomography
Abstrakt: Lung cancer is the primary reason of cancer deaths worldwide, and the percentage of death rate is increasing step by step. There are chances of recovering from lung cancer by detecting it early. In any case, because the number of radiologists is limited and they have been working overtime, the increase in image data makes it hard for them to evaluate the images accurately. As a result, many researchers have come up with automated ways to predict the growth of cancer cells using medical imaging methods in a quick and accurate way. Previously, a lot of work was done on computer-aided detection (CADe) and computer-aided diagnosis (CADx) in computed tomography (CT) scan, magnetic resonance imaging (MRI), and X-ray with the goal of effective detection and segmentation of pulmonary nodule, as well as classifying nodules as malignant or benign. But still, no complete comprehensive review that includes all aspects of lung cancer has been done. In this paper, every aspect of lung cancer is discussed in detail, including datasets, image preprocessing, segmentation methods, optimal feature extraction and selection methods, evaluation measurement matrices, and classifiers. Finally, the study looks into several lung cancer-related issues with possible solutions. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Healthcare Engineering is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Databáze: Complementary Index
Popis
Abstrakt:Lung cancer is the primary reason of cancer deaths worldwide, and the percentage of death rate is increasing step by step. There are chances of recovering from lung cancer by detecting it early. In any case, because the number of radiologists is limited and they have been working overtime, the increase in image data makes it hard for them to evaluate the images accurately. As a result, many researchers have come up with automated ways to predict the growth of cancer cells using medical imaging methods in a quick and accurate way. Previously, a lot of work was done on computer-aided detection (CADe) and computer-aided diagnosis (CADx) in computed tomography (CT) scan, magnetic resonance imaging (MRI), and X-ray with the goal of effective detection and segmentation of pulmonary nodule, as well as classifying nodules as malignant or benign. But still, no complete comprehensive review that includes all aspects of lung cancer has been done. In this paper, every aspect of lung cancer is discussed in detail, including datasets, image preprocessing, segmentation methods, optimal feature extraction and selection methods, evaluation measurement matrices, and classifiers. Finally, the study looks into several lung cancer-related issues with possible solutions. [ABSTRACT FROM AUTHOR]
ISSN:20402295
DOI:10.1155/2022/5905230