From performance curves to performance surfaces: Interactive effects of temperature and oxygen availability on aerobic and anaerobic performance in the common wall lizard.

Saved in:
Bibliographic Details
Title: From performance curves to performance surfaces: Interactive effects of temperature and oxygen availability on aerobic and anaerobic performance in the common wall lizard.
Authors: Telemeco, Rory S., Gangloff, Eric J., Cordero, G. Antonio, Rodgers, Essie M., Aubret, Fabien
Source: Functional Ecology; Oct2022, Vol. 36 Issue 10, p2544-2557, 14p
Subject Terms: LACERTIDAE, TEMPERATURE effect, CURVES, OXYGEN, COLD-blooded animals, HYPOXEMIA
Abstract (English): Accurately predicting the responses of organisms to novel or changing environments requires the development of ecologically‐appropriate experimental methodology and process‐based models.For ectotherms, thermal performance curves (TPCs) have provided a useful framework to describe how organismal performance is dependent on temperature. However, this approach often lacks a mechanistic underpinning, which limits our ability to use TPCs predictively. Furthermore, thermal dependence varies across traits, and performance is also limited by additional abiotic factors, such as oxygen availability.We test a central prediction of our recent Hierarchical Mechanisms of Thermal Limitation (HMTL) Hypothesis which proposes that natural hypoxia exposure will reduce maximal performance and cause the TPC for whole‐organism performance to become more symmetrical.We quantified TPCs for two traits often used as fitness proxies, sprint speed and aerobic scope, in lizards under conditions of normoxia and high‐elevation hypoxia.In line with the predictions of HMTL, anaerobically fuelled sprint speed was unaffected by acute hypoxia while the TPC for aerobic scope became shorter and more symmetrical. This change in TPC shape resulted from both the maximum aerobic scope and the optimal temperature for aerobic scope being reduced in hypoxia as predicted.Following these results, we present a mathematical framework, which we call Temperature–Oxygen Performance Surfaces, to quantify the interactive effects of temperature and oxygen on whole‐organism performance in line with the HMTL hypothesis. This framework is transferrable across traits and levels of organization to allow predictions for how ectotherms will respond to novel combinations of temperature and other abiotic factors, providing a useful tool in a time of rapidly changing environmental conditions. Read the free Plain Language Summary for this article on the Journal blog. [ABSTRACT FROM AUTHOR]
Abstract (French): Résumé: Prédire avec précision les réponses des organismes à des environnements nouveaux ou changeants nécessite le développement d'une méthodologie expérimentale écologiquement appropriée et de modèles basés sur des processus.Chez les ectothermes, les courbes de performance thermique ('thermal performance curve'; TPC) ont fourni un cadre utile pour décrire la manière dont la performance de l'organisme dépend de la température. Cependant, cette approche souffre d'un manque de fondement mécaniste, ce qui limite notre capacité à utiliser les courbes de performance thermique de manière prédictive. De plus, la dépendance thermique des organismes varie selon les traits, et leurs performances sont également limitées par des facteurs abiotiques supplémentaires, tels que la disponibilité en oxygène.Nous testons ici une prédiction centrale de notre récente hypothèse des mécanismes hiérarchiques de limitation thermique ('Hierarchical Mechanisms of Thermal Limitation'; HMTL) où l'exposition à l'hypoxie naturelle non seulement abaisse les performances maximales mais génère également une courbe de performance thermique générale ('whole‐organism') à la fois moins étendue et plus symétrique.Nous quantifions les courbes de performances thermiques pour deux traits souvent utilisés comme indicateurs de fitness, la vitesse de sprint et la capacité aérobie ('aerobic scope') chez les lézards dans des conditions de normoxie et d'hypoxie de haute altitude.La vitesse de sprint (effort anaérobique) ne fut pas affectée par l'hypoxie aiguë, alors que le TPC pour la capacité aérobie devint plus limitée et symétrique. Ce changement de forme de TPC semble résulter à la fois d'une capacité aérobie maximale et d'une température optimale pour la portée aérobie abaissées en conditions d'hypoxie, conformément aux attentes théoriques du modèle HMTL.A l'aune de ces résultats, nous présentons un cadre mathématique ('Temperature‐Oxygen Performance Surfaces'; TOPS) afin de quantifier les effets interactifs de la température et de l'oxygène sur la performance générale de l'organisme conformément à l'hypothèse HMTL. Ce cadre, transférable à d'autres traits et à d'autres niveaux d'organisation, permettra des prédictions sur la façon dont les ectothermes réagissent à de nouvelles combinaisons de températures et autres facteurs abiotiques, fournissant un outil important à une époque où les conditions environnementales changent rapidement. [ABSTRACT FROM AUTHOR]
Copyright of Functional Ecology is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Description
Abstract:Accurately predicting the responses of organisms to novel or changing environments requires the development of ecologically‐appropriate experimental methodology and process‐based models.For ectotherms, thermal performance curves (TPCs) have provided a useful framework to describe how organismal performance is dependent on temperature. However, this approach often lacks a mechanistic underpinning, which limits our ability to use TPCs predictively. Furthermore, thermal dependence varies across traits, and performance is also limited by additional abiotic factors, such as oxygen availability.We test a central prediction of our recent Hierarchical Mechanisms of Thermal Limitation (HMTL) Hypothesis which proposes that natural hypoxia exposure will reduce maximal performance and cause the TPC for whole‐organism performance to become more symmetrical.We quantified TPCs for two traits often used as fitness proxies, sprint speed and aerobic scope, in lizards under conditions of normoxia and high‐elevation hypoxia.In line with the predictions of HMTL, anaerobically fuelled sprint speed was unaffected by acute hypoxia while the TPC for aerobic scope became shorter and more symmetrical. This change in TPC shape resulted from both the maximum aerobic scope and the optimal temperature for aerobic scope being reduced in hypoxia as predicted.Following these results, we present a mathematical framework, which we call Temperature–Oxygen Performance Surfaces, to quantify the interactive effects of temperature and oxygen on whole‐organism performance in line with the HMTL hypothesis. This framework is transferrable across traits and levels of organization to allow predictions for how ectotherms will respond to novel combinations of temperature and other abiotic factors, providing a useful tool in a time of rapidly changing environmental conditions. Read the free Plain Language Summary for this article on the Journal blog. [ABSTRACT FROM AUTHOR]
ISSN:02698463
DOI:10.1111/1365-2435.14147