Molecular Simulation Approaches to the Study of Thermotropic and Lyotropic Liquid Crystals.

Gespeichert in:
Bibliographische Detailangaben
Titel: Molecular Simulation Approaches to the Study of Thermotropic and Lyotropic Liquid Crystals.
Autoren: Wilson, Mark R., Yu, Gary, Potter, Thomas D., Walker, Martin, Gray, Sarah J., Li, Jing, Boyd, Nicola Jane
Quelle: Crystals (2073-4352); May2022, Vol. 12 Issue 5, pN.PAG-N.PAG, 24p
Schlagwörter: LYOTROPIC liquid crystals, MOLECULAR force constants, PARALLEL computers, LIQUID crystals, ELASTIC constants, MECHANICAL properties of condensed matter
Abstract: Over the last decade, the availability of computer time, together with new algorithms capable of exploiting parallel computer architectures, has opened up many possibilities in molecularly modelling liquid crystalline systems. This perspective article points to recent progress in modelling both thermotropic and lyotropic systems. For thermotropic nematics, the advent of improved molecular force fields can provide predictions for nematic clearing temperatures within a 10 K range. Such studies also provide valuable insights into the structure of more complex phases, where molecular organisation may be challenging to probe experimentally. Developments in coarse-grained models for thermotropics are discussed in the context of understanding the complex interplay of molecular packing, microphase separation and local interactions, and in developing methods for the calculation of material properties for thermotropics. We discuss progress towards the calculation of elastic constants, rotational viscosity coefficients, flexoelectric coefficients and helical twisting powers. The article also covers developments in modelling micelles, conventional lyotropic phases, lyotropic phase diagrams, and chromonic liquid crystals. For the latter, atomistic simulations have been particularly productive in clarifying the nature of the self-assembled aggregates in dilute solution. The development of effective coarse-grained models for chromonics is discussed in detail, including models that have demonstrated the formation of the chromonic N and M phases. [ABSTRACT FROM AUTHOR]
Copyright of Crystals (2073-4352) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Datenbank: Complementary Index
Beschreibung
Abstract:Over the last decade, the availability of computer time, together with new algorithms capable of exploiting parallel computer architectures, has opened up many possibilities in molecularly modelling liquid crystalline systems. This perspective article points to recent progress in modelling both thermotropic and lyotropic systems. For thermotropic nematics, the advent of improved molecular force fields can provide predictions for nematic clearing temperatures within a 10 K range. Such studies also provide valuable insights into the structure of more complex phases, where molecular organisation may be challenging to probe experimentally. Developments in coarse-grained models for thermotropics are discussed in the context of understanding the complex interplay of molecular packing, microphase separation and local interactions, and in developing methods for the calculation of material properties for thermotropics. We discuss progress towards the calculation of elastic constants, rotational viscosity coefficients, flexoelectric coefficients and helical twisting powers. The article also covers developments in modelling micelles, conventional lyotropic phases, lyotropic phase diagrams, and chromonic liquid crystals. For the latter, atomistic simulations have been particularly productive in clarifying the nature of the self-assembled aggregates in dilute solution. The development of effective coarse-grained models for chromonics is discussed in detail, including models that have demonstrated the formation of the chromonic N and M phases. [ABSTRACT FROM AUTHOR]
ISSN:20734352
DOI:10.3390/cryst12050685