Image semantic segmentation method based on GAN network and FCN model.
Saved in:
| Title: | Image semantic segmentation method based on GAN network and FCN model. |
|---|---|
| Source: | Journal of Engineering; Jan2022, Vol. 2022 Issue 1, p1-9, 9p |
| Subject Terms: | GENERATIVE adversarial networks, ELECTRIC generators, BIG data, PASCAL (Computer program language), KERNEL (Mathematics) |
| Abstract: | In order to improve the accuracy of image semantic segmentation, an image semantic segmentation method based on generative adversarial network (GAN) and fully convolutional network (FCN) model is proposed. First of all, the network structure of the generator is improved. Introducing the residual module in the convolutional layer for difference learning makes the network structure sensitive to changes in the output, so as to better adjust the weight of the generator. Second in order to reduce the number of parameters and calculations, a small convolution kernel is used to halve the number of channels of the input feature map before using the large convolution kernel. Finally, the output of the convolutional layer and the output of the deconvolutional layer are connected by using the idea of a U‐shaped network to avoid low‐level information sharing. The proposed method was experimentally demonstrated on the PASCAL VOC 2012 and CamVid datasets. Experimental results show that the proposed method effectively improves the accuracy of image segmentation, and avoids inaccurate detection caused by insufficient image pixel information and noise interference. Its mean pixel accuracy (MPA) and mean intersection over union (MIOU) are higher than other comparison methods. [ABSTRACT FROM AUTHOR] |
| Copyright of Journal of Engineering is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) | |
| Database: | Complementary Index |
Be the first to leave a comment!
Full Text Finder
Nájsť tento článok vo Web of Science