A telediagnosis assistance system for multiple-lead electrocardiography.

Saved in:
Bibliographic Details
Title: A telediagnosis assistance system for multiple-lead electrocardiography.
Authors: Bentes, Paulo César Lucena, Nadal, Jurandir
Source: Physical & Engineering Sciences in Medicine; Jun2021, Vol. 44 Issue 2, p473-485, 13p
Abstract: The diffusion of telemedicine opens-up a new perspective for the development of technologies furthered by Biomedical Engineering. In particular, herein we deal with those related to telediagnosis through multiple-lead electrocardiographic signals. This study focuses on the proof-of-concept of an internet-based telemedicine system as a use case that attests to the feasibility for the development, within the university environment, of techniques for remote processing of biomedical signals for adjustable detection of myocardial ischemia episodes. At each signal lead, QRS complexes are detected and delimited with the J-point marking. The same procedure to detect the complex is used to identify the respective T wave, then the area over the ST segment is applied to detect ischemia-related elevations. The entire system is designed on web-based telemedicine services using multiuser, remote access technologies, and database. The measurements for sensitivity and precision had their respective averages calculated at 11.79 and 24.21% for the leads of lower noise. The evaluations regarding the aspects of user friendliness and the usefulness of the application, resulted in 88.57 and 89.28% of broad or total acceptance, respectively. They are robust enough to enable scalability and can be offered by cloud computing, besides enabling the development of new biomedical signal processing techniques within the concept of distance services, using a modular architecture with collaborative bias. [ABSTRACT FROM AUTHOR]
Copyright of Physical & Engineering Sciences in Medicine is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Be the first to leave a comment!
You must be logged in first