Evolution of technical debt remediation in Python: A case study on the Apache Software Ecosystem.
Saved in:
| Title: | Evolution of technical debt remediation in Python: A case study on the Apache Software Ecosystem. |
|---|---|
| Authors: | Tan, Jie, Feitosa, Daniel, Avgeriou, Paris, Lungu, Mircea |
| Source: | Journal of Software: Evolution & Process; Apr2021, Vol. 33 Issue 4, p1-25, 25p |
| Subject Terms: | SHORT-term debt, PYTHON programming language, DEBT, PROGRAMMING languages, COMPUTER software |
| Abstract: | In recent years, the evolution of software ecosystems and the detection of technical debt received significant attention by researchers from both industry and academia. While a few studies that analyze various aspects of technical debt evolution already exist, to the best of our knowledge, there is no large‐scale study that focuses on the remediation of technical debt over time in Python projects—that is, one of the most popular programming languages at the moment. In this paper, we analyze the evolution of technical debt in 44 Python open‐source software projects belonging to the Apache Software Foundation. We focus on the type and amount of technical debt that is paid back. The study required the mining of over 60K commits, detailed code analysis on 3.7K system versions, and the analysis of almost 43K fixed issues. The findings show that most of the repayment effort goes into testing, documentation, complexity, and duplication removal. Moreover, more than half of the Python technical debt is short term being repaid in less than 2 months. In particular, the observations that a minority of rules account for the majority of issues fixed and spent effort suggest that addressing those kinds of debt in the future is important for research and practice. [ABSTRACT FROM AUTHOR] |
| Copyright of Journal of Software: Evolution & Process is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) | |
| Database: | Complementary Index |
Be the first to leave a comment!
Full Text Finder
Nájsť tento článok vo Web of Science