An empirical study to estimate the stability of random forest classifier on the hybrid features recommended by filter based feature selection technique.
Gespeichert in:
| Titel: | An empirical study to estimate the stability of random forest classifier on the hybrid features recommended by filter based feature selection technique. |
|---|---|
| Autoren: | Darshan, S. L. Shiva, Jaidhar, C. D. |
| Quelle: | International Journal of Machine Learning & Cybernetics; Feb2020, Vol. 11 Issue 2, p339-358, 20p |
| Abstract: | The emergence of advanced malware is a serious threat to information security. A prominent technique that identifies sophisticated malware should consider the runtime behaviour of the source file to detect malicious intent. Although the behaviour-based malware detection technique is a substantial improvement over the traditional signature-based detection technique, current malware employs code obfuscation techniques to elude detection. This paper presents the Hybrid Features-based malware detection system (HFMDS) that integrates static and dynamic features of the portable executable (PE) files to discern malware. The HFMDS is trained with prominent features advised by the filter-based feature selection technique (FST). The detection ability of the proposed HFMDS has evaluated with the random forest (RF) classifier by considering two different datasets that consist of real-world Windows malware samples. In-depth analysis is carried out to determine the optimal number of decision trees (DTs) required by the RF classifier to achieve consistent accuracy. Besides, four popular FSTs performance is also analyzed to determine which FST recommends the best features. From the experimental analysis, we can infer that increasing the number of DTs after 160 within the RF classifier does not make a significant difference in attaining better detection accuracy. [ABSTRACT FROM AUTHOR] |
| Copyright of International Journal of Machine Learning & Cybernetics is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) | |
| Datenbank: | Complementary Index |
Schreiben Sie den ersten Kommentar!
Full Text Finder
Nájsť tento článok vo Web of Science