A calibrated asymptotic framework for analyzing packet classification algorithms on GPUs.

Saved in:
Bibliographic Details
Title: A calibrated asymptotic framework for analyzing packet classification algorithms on GPUs.
Authors: Abbasi, M., Rafiee, M.
Source: Journal of Supercomputing; Oct2019, Vol. 75 Issue 10, p6574-6611, 38p
Subject Terms: CLASSIFICATION algorithms, PARALLEL programming, PARALLEL algorithms, GRAPHICS processing units
Abstract: Packet classification is a computationally intensive, highly parallelizable task in many advanced network systems like high-speed routers and firewalls. Recently, graphics processing units (GPUs) have been exploited as efficient accelerators for parallel implementation of software packet classifiers. However, due to the lack of a comprehensive analysis framework, none of the conducted studies to date has efficiently exploited the capabilities of the complex memory subsystem of such highly threaded machines. In this work, we combine asymptotic and calibrated analysis frameworks to present a more efficient framework that not only can boost the straightforward design of efficient parallel algorithms that run on different architectures of GPU but also can provide a powerful analysis tool for predicting any empirical result. Comparing analytical results with the experimental findings of ours and other researchers who have implemented and evaluated packet classification algorithms on a variety of GPUs evinces the efficiency of the proposed analysis framework. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Supercomputing is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Be the first to leave a comment!
You must be logged in first