Podrobná bibliografie
| Název: |
Time reversal imaging based on joint space–frequency and frequency–frequency data. |
| Autoři: |
Mu, Tong, Song, Yaoliang |
| Zdroj: |
International Journal of Microwave & Wireless Technologies; Apr2019, Vol. 11 Issue 3, p207-214, 8p |
| Abstrakt: |
A new time reversal (TR) method for target imaging is proposed in this paper. Through single measurement by the antenna array, the received signals are utilized to form the space–frequency–frequency multistatic data matrix (MDM). Singular value decomposition is applied to the matrix to obtain the left singular vectors which span the signal subspace. The obtained vectors are divided into multiple subvectors by two different schemes and used to provide target signatures in the form of coarse frequency dependence and relative phase shifts that can be exploited to construct the imaging function. The performance of the proposed method is investigated through numerical simulations for both single and multiple targets, and the results are compared with the traditional TR method using the frequency–frequency MDM. It turned out that the proposed method is able to achieve high resolution with limited array aperture and shows satisfactory robustness in noise environment. Furthermore, experimental results are provided to show the availability of the method in practical applications. [ABSTRACT FROM AUTHOR] |
|
Copyright of International Journal of Microwave & Wireless Technologies is the property of Cambridge University Press and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
| Databáze: |
Complementary Index |