Deep learning hashing for mobile visual search.

Saved in:
Bibliographic Details
Title: Deep learning hashing for mobile visual search.
Authors: Liu, Wu, Ma, Huadong, Qi, Heng, Zhao, Dong, Chen, Zhineng
Source: EURASIP Journal on Image & Video Processing; 2/21/2017, Vol. 2017 Issue 1, p1-11, 11p
Subject Terms: DEEP learning, HASHING, MOBILE apps, SMARTPHONES, BIT rate
Abstract: The proliferation of mobile devices is producing a new wave of mobile visual search applications that enable users to sense their surroundings with smart phones. As the particular challenges of mobile visual search, achieving high recognition bitrate becomes the consistent target of existed related works. In this paper, we explore to holistically exploit the deep learning-based hashing methods for more robust and instant mobile visual search. Firstly, we present a comprehensive survey of the existed deep learning based hashing methods, which showcases their remarkable power of automatic learning highly robust and compact binary code representation for visual search. Furthermore, in order to implement the deep learning hashing on computation and memory constrained mobile device, we investigate the deep learning optimization works to accelerate the computation and reduce the model size. Finally, we demonstrate a case study of deep learning hashing based mobile visual search system. The evaluations show that the proposed system can significantly improve 70% accuracy in MAP than traditional methods, and only needs less than one second computation time on the ordinary mobile phone. Finally, with the comprehensive study, we discuss the open issues and future research directions of deep learning hashing for mobile visual search. [ABSTRACT FROM AUTHOR]
Copyright of EURASIP Journal on Image & Video Processing is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Description
Abstract:The proliferation of mobile devices is producing a new wave of mobile visual search applications that enable users to sense their surroundings with smart phones. As the particular challenges of mobile visual search, achieving high recognition bitrate becomes the consistent target of existed related works. In this paper, we explore to holistically exploit the deep learning-based hashing methods for more robust and instant mobile visual search. Firstly, we present a comprehensive survey of the existed deep learning based hashing methods, which showcases their remarkable power of automatic learning highly robust and compact binary code representation for visual search. Furthermore, in order to implement the deep learning hashing on computation and memory constrained mobile device, we investigate the deep learning optimization works to accelerate the computation and reduce the model size. Finally, we demonstrate a case study of deep learning hashing based mobile visual search system. The evaluations show that the proposed system can significantly improve 70% accuracy in MAP than traditional methods, and only needs less than one second computation time on the ordinary mobile phone. Finally, with the comprehensive study, we discuss the open issues and future research directions of deep learning hashing for mobile visual search. [ABSTRACT FROM AUTHOR]
ISSN:16875176
DOI:10.1186/s13640-017-0167-4