Time dispersion analysis of features as a tool for investigating plant electrophysiology: A case study using moderate magnetic field in bean plants.

Uloženo v:
Podrobná bibliografie
Název: Time dispersion analysis of features as a tool for investigating plant electrophysiology: A case study using moderate magnetic field in bean plants.
Autoři: de Carvalho Oliveira TF; Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil. fthicar@gmail.com., Costa ÁVL; Mamirauá Sustainable Development Institute, Agroecosystems Management Program, Tefé, Amazonas, Brazil., Posso DA; Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil., Reissig GN; Laboratory of Entomology, Brazilian Agricultural Research Corporation, Embrapa Clima Temperado, Pelotas, Brazil., Souza GM; Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil.
Zdroj: Journal of biological physics [J Biol Phys] 2025 Nov 14; Vol. 51 (1), pp. 28. Date of Electronic Publication: 2025 Nov 14.
Způsob vydávání: Journal Article
Jazyk: English
Informace o časopise: Publisher: Kluwer Country of Publication: Netherlands NLM ID: 0417731 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-0689 (Electronic) Linking ISSN: 00920606 NLM ISO Abbreviation: J Biol Phys Subsets: MEDLINE
Imprint Name(s): Publication: Dordrecht : Kluwer
Original Publication: Blacksburg, Va., University Publications.
Výrazy ze slovníku MeSH: Magnetic Fields* , Phaseolus*/physiology , Electrophysiological Phenomena*, Time Factors
Abstrakt: Competing Interests: Declarations. Conflict of interest: The authors declare no competing interests.
Electrophysiological signals in plants, which are a part of the plant electrome, are essential for mediating responses to environmental stimuli but exhibit complex, non-linear dynamics that challenge conventional analyses. Here, we introduce the time dispersion analysis of features (TDAF), a novel method that preserves temporal integrity by assessing the dispersion of signal features over time by segmenting time series and evaluating the temporal evolution of extracted features. Unlike traditional methods, such as moving averages or stationarity-based models, that summarize the signal or lose temporal information, TDAF analyzes the evolution of features over time, maintaining their dynamic structure. We applied TDAF to investigate the effects of a moderate static magnetic field (~ 0.4 mT) on the electrome of common bean plants (Phaseolus vulgaris L.). Signals from 30 plants were recorded before and during magnetic field exposure, generating time series with 225,000 points each. Features such as approximate entropy (ApEn), detrended fluctuation analysis (DFA), fast Fourier transform (FFT), power spectral density (PSD), and average band power (ABP) were analyzed. Our results suggest that magnetic field exposure tends to reduce signal amplitude but preserves the structural complexity and temporal patterns of the electrome, indicating modulation without loss of information processing capacity. TDAF proved effective for detecting subtle physiological changes and offers a valuable tool for advancing plant electrophysiology, bioelectromagnetic research, and studies involving complex and long-duration biological signals.
(© 2025. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Hedrich, R., Salvador-Recatalà, V., Dreyer, I.: Electrical wiring and long-distance plant communication. Trends Plant Sci. 21, 376–387 (2016). (PMID: 10.1016/j.tplants.2016.01.016)
Sukhov, V., Sukhova, E., Vodeneev, V.: Long-distance electrical signals as a link between the local action of stressors and the systemic physiological responses in higher plants. Prog. Biophys. Mol. Biol. 146, 63–84 (2019). (PMID: 10.1016/j.pbiomolbio.2018.11.009)
Sukhov, V.: Electrical signals as mechanism of photosynthesis regulation in plants. Photosynth. Res. 130, 373–387 (2016). (PMID: 10.1007/s11120-016-0270-x)
Vodeneev, V., Akinchits, E., Sukhov, V.: Variation potential in higher plants: mechanisms of generation and propagation. Plant Signal. Behav. (2015). https://doi.org/10.1080/15592324.2015.1057365. (PMID: 10.1080/15592324.2015.1057365)
Cuin, T., Dreyer, I., Michard, E.: The role of potassium channels in Arabidopsis thaliana long distance electrical signalling: AKT2 modulates tissue excitability while GORK shapes action potentials. Int. J. Mol. Sci. 19(3), 926 (2018). (PMID: 10.3390/ijms19040926)
de Toledo, G.R.A., et al.: Plant electrome: the electrical dimension of plant life. Theor. Exp. Plant Physiol 31, 21–46 (2019). (PMID: 10.1007/s40626-019-00145-x)
Debono, M.W.: Dynamic protoneural networks in plants: a new approach of spontaneous extracellular potential variations. Plant Signal. Behav. 8, 1–10 (2013). (PMID: 10.4161/psb.24207)
Souza, G.M., Ferreira, A.S., Saraiva, G.F.R., Toledo, G.R.A.: Plant ‘electrome’ can be pushed toward a self-organized critical state by external cues: evidences from a study with soybean seedlings subject to different environmental conditions. Plant Signal. Behav. 12, e1290040 (2017).
de Toledo, G.R.A., et al.: Plant electrome: the electrical dimension of plant life. Theor. Exp. Plant Physiol. (2019). https://doi.org/10.1007/s40626-019-00145-x. (PMID: 10.1007/s40626-019-00145-x)
Kozlova, E., Yudina, L., Sukhova, E., Sukhov, V.: Analysis of electrome as a tool for plant monitoring: progress and perspectives. Plants 14, 1500 (2025).
Simmi, F.Z., Dallagnol, L.J., Ferreira, A.S., Pereira, D.R., Souza, G.M.: Electrome alterations in a plant-pathogen system: toward early diagnosis. Bioelectrochemistry 133, 107493 (2020). (PMID: 10.1016/j.bioelechem.2020.107493)
Liu, C., et al.: Cross-individual electrophysiological signal recognition in Clivia biosensors via domain adaptation. Applied Soft Computing 178, 113323 (2025). (PMID: 10.1016/j.asoc.2025.113323)
Reissig, G.N., et al.: Fruit herbivory alters plant electrome: evidence for fruit-shoot long-distance electrical signaling in tomato plants. Front. Sustain. Food Syst. (2021). https://doi.org/10.3389/fsufs.2021.657401. (PMID: 10.3389/fsufs.2021.657401)
Reissig, G.N., et al.: Machine learning for automatic classification of tomato ripening stages using electrophysiological recordings. Front. Sustain. Food Syst. (2021). https://doi.org/10.3389/fsufs.2021.696829. (PMID: 10.3389/fsufs.2021.696829)
Parise, A.G., et al.: Detection of different hosts from a distance alters the behaviour and bioelectrical activity of Cuscuta racemosa. Front. Plant Sci. 12, 1–21 (2021). (PMID: 10.3389/fpls.2021.594195)
Saraiva, G. F. R., Ferreira, A. S., Souza, G. M.: Beyond APs and VPs: evidences of chaos and self-organized criticality in electrical signals in plants.  https://www.biorxiv.org/content/10.1101/064790v1 (2016).
Souza, G.M., Posso, D.A., de Carvalho Oliveira, T.F.: The quest for time in plant physiology: a processual perspective. Theor. Exp. Plant Physiol. 36, 387–398 (2024). (PMID: 10.1007/s40626-024-00307-6)
Vanessa Lira Costa, Á., et al.: Systemic signals induced by single and combined abiotic stimuli in common bean plants. Plants (2023). https://doi.org/10.3390/plants12040924. (PMID: 10.3390/plants12040924)
Goldberger, A.L., et al.: Fractal dynamics in physiology: alterations with disease and aging. Proc. Natl. Acad. Sci. U. S. A. 99, 2466–2472 (2002). (PMID: 10.1073/pnas.012579499)
Peng, C.-K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–87 (1995). (PMID: 10.1063/1.166141)
Ivanov, P.C., et al.: Multifractality in human heartbeat dynamics. Nature 399, 461–465 (1999). (PMID: 10.1038/20924)
Sukhov, V., et al.: Influence of magnetic field with Schumann resonance frequencies on photosynthetic light reactions in wheat and pea. Cells 10, 149 (2021). (PMID: 10.3390/cells10010149)
Vian, A., Davies, E., Gendraud, M., Bonnet, P.: Plant responses to high frequency electromagnetic fields. Biomed. Res. Int. 2016, 1–13 (2016). (PMID: 10.1155/2016/1830262)
Bingi, V.N., Savin, A.V.: Effects of weak magnetic fields on biological systems: physical aspects. Uspekhi Fizicheskih Nauk 173, 265 (2003). (PMID: 10.3367/UFNr.0173.200303b.0265)
Sahebjamei, H., Abdolmaleki, P., Ghanati, F.: Effects of magnetic field on the antioxidant enzyme activities of suspension-cultured tobacco cells. Bioelectromagnetics 28, 42–47 (2007). (PMID: 10.1002/bem.20262)
Maffei, M. E.: Magnetic field effects on plant growth, development, and evolution. Front. Plant Sci. 5, (2014).
Souza, G. M., Bertolli, S. C., Lüttge, U.: Hierarchy and information in a system approach to plant biology: explaining the irreducibility in plant ecophysiology. Progress in Botany 77, pp. 167–186 (2016). https://doi.org/10.1007/978-3-319-25688-7_5 .
Souza, G. M., Toledo, G. R. A., Saraiva, G. F. R. Towards systemic view for plant learning: ecophysiological perspective. Memory and Learning in Plants, pp. 163–189 (2018). https://doi.org/10.1007/978-3-319-75596-0_9 .
Saraiva, G.F.R., Ferreira, A.S., Souza, G.M.: Osmotic stress decreases complexity underlying the electrophysiological dynamic in soybean. Plant Biol. 19, 702–708 (2017). (PMID: 10.1111/plb.12576)
Torrence, C., Compo, G.P.: A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79, 61–78 (1998). (PMID: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2)
Montgomery, D. C., Jennings, C. L., Kulahci, M.: Introduction to time series analysis and forecasting. Wiley (2024).
Hoagland, D.R., Arnon, D.I.: The Water-Culture Method for Growing Plants without Soil. California Agricultural Experiment Station Circular 347, 1–39 (1950).
Volkov, A.G., Haack, R.A.: Insect-induced biolectrochemical signals in potato plants. Bioelectrochemistry and Bioenergetics 37, 55–60 (1995). (PMID: 10.1016/0302-4598(94)01759-T)
Parise, A.G., et al.: Detection of different hosts from a distance alters the behaviour and bioelectrical activity of Cuscuta racemosa. Front. Plant Sci. (2021). https://doi.org/10.3389/fpls.2021.594195. (PMID: 10.3389/fpls.2021.594195)
Stone, H. R66–50 An algorithm for the machine calculation of complex Fourier series. IEEE Trans. Elec. Comput. EC-15, 680–681 (2007).
Bluestein, L.: A linear filtering approach to the computation of discrete Fourier transform. IEEE Trans. Audio Electroacoust. 18, 451–455 (1970). (PMID: 10.1109/TAU.1970.1162132)
Virtanen, P., et al.: Scipy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020). (PMID: 10.1038/s41592-019-0686-2)
Welch, P.: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15, 70–73 (1967). (PMID: 10.1109/TAU.1967.1161901)
Abhang, P. A., Gawali, B. W., Mehrotra, S. C.: Technological basics of EEG recording and operation of apparatus. Introduction to EEG- and Speech-Based Emotion Recognition, pp. 19–50 (2016) https://doi.org/10.1016/B978-0-12-804490-2.00002-6 .
Abhang, P. A., Gawali, B. W., Mehrotra, S. C.: Technical aspects of brain rhythms and speech parameters. In Introduction to EEG- and Speech-Based Emotion Recognition, pp. 51–79 (Elsevier, 2016). https://doi.org/10.1016/B978-0-12-804490-2.00003-8 .
Delimayanti, M.K., et al.: Classification of brainwaves for sleep stages by high-dimensional FFT features from EEG signals. Applied Sciences 10, 1797 (2020). (PMID: 10.3390/app10051797)
Evans, J. R.: Neurofeedback. In Encyclopedia of the Human Brain, pp. 465–477 (Elsevier, 2002). https://doi.org/10.1016/B0-12-227210-2/00242-9 .
Heraz, A., Razaki, R., Frasson, C.: Using machine learning to predict learner emotional state from brainwaves. In Seventh IEEE International Conference on Advanced Learning Technologies (ICALT 2007), pp. 853–857 (IEEE, 2007). https://doi.org/10.1109/ICALT.2007.277 .
Kora, P., Meenakshi, K., Swaraja, K., Rajani, A., Raju, M.S.: EEG based interpretation of human brain activity during yoga and meditation using machine learning: a systematic review. Complement. Ther. Clin. Pract. 43, 101329 (2021). (PMID: 10.1016/j.ctcp.2021.101329)
Savadkoohi, M., Oladunni, T., Thompson, L.: A machine learning approach to epileptic seizure prediction using electroencephalogram (EEG) signal. Biocybernetics and Biomedical Engineering 40, 1328–1341 (2020). (PMID: 10.1016/j.bbe.2020.07.004)
Press, W. H. et al.: Numerical Recipes in Pascal (First Edition): The Art of Scientific Computing. (Cambridge University Press, 1989).
Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. U.S.A. 88, 2297–2301 (1991). (PMID: 10.1073/pnas.88.6.2297)
Souza, G.M., Pincus, S.M., Monteiro, J.A.F.: The complexity-stability hypothesis in plant gas exchange under water deficit. Braz. J. Plant. Physiol. 17, 363–373 (2005). (PMID: 10.1590/S1677-04202005000400004)
Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278, H2039–H2049 (2000). (PMID: 10.1152/ajpheart.2000.278.6.H2039)
Schiratti, J.-B., Le Douget, J.-E., Le Van Quyen, M., Essid, S., Gramfort, A.: An ensemble learning approach to detect epileptic seizures from long intracranial EEG recordings. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 856–860 (IEEE, 2018). https://doi.org/10.1109/ICASSP.2018.8461489 .
Hardstone, R., et al.: Detrended fluctuation analysis: a scale-free view on neuronal oscillations. Front. Physiol. 3, 1–13 (2012). (PMID: 10.3389/fphys.2012.00450)
Pall, M. L.: Scientific evidence contradicts findings and assumptions of Canadian Safety Panel 6: microwaves act through voltage-gated calcium channel activation to induce biological impacts at non-thermal levels, supporting a paradigm shift for microwave/lower freque. Rev. Environ. Health 30, (2015).
Rosen, A.D.: Effect of a 125 mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells. Bioelectromagnetics 24, 517–523 (2003). (PMID: 10.1002/bem.10124)
Teodori, L., et al.: Exposure of cells to static magnetic field accelerates loss of integrity of plasma membrane during apoptosis. Cytometry 49, 113–118 (2002). (PMID: 10.1002/cyto.10160)
Dini, L., Abbro, L.: Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron 36, 195–217 (2005). (PMID: 10.1016/j.micron.2004.12.009)
Clapham, D.E.: Calcium signaling. Cell 131, 1047–1058 (2007). (PMID: 10.1016/j.cell.2007.11.028)
White, N. E., Richards, L. M.: Alpha-theta neurotherapy and the neurobehavioral treatment of addictions, mood disorders and trauma. Introduction to Quantitative EEG and Neurofeedback, pp. 143–166 (2009) https://doi.org/10.1016/B978-0-12-374534-7.00006-X .
Grant Information: 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; 401722/2016-3 Conselho Nacional de Desenvolvimento Científico e Tecnológico
Contributed Indexing: Keywords: Approximate entropy; Detrended fluctuation analysis; Electrome; Non-linear dynamics; Power spectral density
Entry Date(s): Date Created: 20251114 Date Completed: 20251115 Latest Revision: 20251117
Update Code: 20251117
PubMed Central ID: PMC12618745
DOI: 10.1007/s10867-025-09692-8
PMID: 41239061
Databáze: MEDLINE
Buďte první, kdo okomentuje tento záznam!
Nejprve se musíte přihlásit.