Top-down modulation of visual action perception: distinct task effects in the action observation network.

Saved in:
Bibliographic Details
Title: Top-down modulation of visual action perception: distinct task effects in the action observation network.
Authors: Eroğlu A; Max Planck Institute for Biological Cybernetics, Tübingen, Germany. asli.eroglu@tuebingen.mpg.de.; Department of Neuroscience, Bilkent University, Ankara, Turkey. asli.eroglu@tuebingen.mpg.de., Urgen BA; Department of Neuroscience, Bilkent University, Ankara, Turkey.; Department of Psychology, Bilkent University, Ankara, Turkey.; Aysel Sabuncu Brain Research Center and National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey.
Source: Brain structure & function [Brain Struct Funct] 2025 Nov 10; Vol. 230 (9), pp. 175. Date of Electronic Publication: 2025 Nov 10.
Publication Type: Journal Article
Language: English
Journal Info: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 101282001 Publication Model: Electronic Cited Medium: Internet ISSN: 1863-2661 (Electronic) Linking ISSN: 18632653 NLM ISO Abbreviation: Brain Struct Funct Subsets: MEDLINE
Imprint Name(s): Original Publication: Berlin : Springer-Verlag, c2007-
MeSH Terms: Attention*/physiology , Visual Perception*/physiology , Brain*/physiology , Brain*/diagnostic imaging , Motion Perception*/physiology, Humans ; Male ; Female ; Magnetic Resonance Imaging ; Young Adult ; Brain Mapping ; Adult ; Photic Stimulation ; Parietal Lobe/physiology
Abstract: Perceiving others' actions is essential for survival and social interaction. Cognitive neuroscience research has identified a network of brain regions crucial to visual action perception, known as the Action Observation Network (AON), comprising the posterior superior temporal cortex (pSTS), posterior parietal cortex, and premotor cortex. Recent research highlights the importance of integrating top-down processes, such as attention, to gain a deeper understanding of action perception. This study investigates how attention modulates the AON during human action perception. We conducted a two-session fMRI experiment with 27 participants. They viewed eight videos of pushing actions, varying in actor (female vs. male), effector (hand vs. foot), and target (human vs. object). In the first session, participants focused on specific features of the videos (actor, effector, or target). In the second, they passively viewed the videos. From the passive viewing session data, we defined regions of interest (ROIs) in the pSTS, parietal, and premotor cortices for each hemisphere. We then performed model-based representational similarity analysis (RSA) and decoding analysis. RSA results showed that only the task model, among all tested models, exhibited a significant correlation with neural representational similarity matrices (RDMs) across all ROIs, indicating a specific alignment between AON nodes and the ongoing task. Decoding analysis further showed that different task types uniquely affected each AON node, indicating feature- and region-specific interactions. These findings underscore that top-down attentional processes significantly alter neural representations within the AON, highlighting the dynamic interplay between attention and action perception in the brain.
(© 2025. The Author(s).)
Competing Interests: Declarations. Conflict of interest: The authors declare no competing interests. Ethical approval: The study was approved by the Human Research Ethics Committee of Bilkent University. Consent to participate: Informed consent was obtained from all individual participants included in the study.
References: Neuroimage. 2021 Nov;243:118511. (PMID: 34450263)
Front Psychol. 2014 Apr 23;5:333. (PMID: 24795681)
Neuron. 2007 Jan 4;53(1):9-16. (PMID: 17196526)
Proc Biol Sci. 2016 Apr 13;283(1828):. (PMID: 27053755)
Brain Behav. 2019 Mar;9(3):e01226. (PMID: 30740932)
J Neurosci. 2022 Aug 31;42(35):6782-6799. (PMID: 35863889)
Trends Cogn Sci. 2024 May;28(5):392-393. (PMID: 38632007)
J Neurosci. 2017 Jan 18;37(3):562-575. (PMID: 28100739)
Trends Neurosci. 2006 Jun;29(6):317-22. (PMID: 16697058)
J Neurosci. 2009 Jun 3;29(22):7315-29. (PMID: 19494153)
Prog Neurobiol. 2021 Oct;205:102128. (PMID: 34343630)
Cortex. 2020 Jul;128:132-142. (PMID: 32335327)
Neuropsychologia. 2019 Apr;127:35-47. (PMID: 30772426)
Hum Brain Mapp. 2015 Oct;36(10):3845-66. (PMID: 26129732)
Front Psychol. 2014 Mar 05;5:151. (PMID: 24634664)
PLoS Comput Biol. 2017 Feb 23;13(2):e1005350. (PMID: 28231282)
J Neurosci. 2006 Jan 25;26(4):1133-7. (PMID: 16436599)
Neuroimage. 2010 Apr 15;50(3):1148-67. (PMID: 20056149)
Eur J Neurosci. 2025 Mar;61(6):e70082. (PMID: 40114360)
Front Neuroinform. 2014 Feb 21;8:14. (PMID: 24600388)
Phys Life Rev. 2023 Sep;46:220-244. (PMID: 37499620)
Cereb Cortex. 2016 Aug;26(8):3390-3401. (PMID: 26223260)
IEEE Trans Pattern Anal Mach Intell. 2013 Jan;35(1):185-207. (PMID: 22487985)
Trends Cogn Sci. 2021 Feb;25(2):100-110. (PMID: 33334693)
Neuroimage. 2007 Aug 1;37(1):90-101. (PMID: 17560126)
Hum Brain Mapp. 2024 Feb 15;45(3):e26605. (PMID: 38379447)
J Neurosci. 2006 Feb 22;26(8):2260-8. (PMID: 16495453)
IEEE Trans Med Imaging. 2001 Jan;20(1):45-57. (PMID: 11293691)
Front Neurol. 2015 Dec 03;6:248. (PMID: 26696951)
J Neurophysiol. 2005 Jan;93(1):603-8. (PMID: 15295012)
Nat Methods. 2019 Jan;16(1):111-116. (PMID: 30532080)
Neurosci Biobehav Rev. 2019 Oct;105:106-114. (PMID: 31394116)
Cortex. 2017 May;90:125-137. (PMID: 28391066)
Brain. 2007 Sep;130(Pt 9):2452-61. (PMID: 17660183)
Nat Neurosci. 2009 Dec;12(12):1594-600. (PMID: 19915566)
Nat Commun. 2023 Jun 7;14(1):3316. (PMID: 37286553)
Cereb Cortex. 2021 Jun 10;31(7):3522-3535. (PMID: 33629729)
Neuron. 2006 Mar 16;49(6):815-22. (PMID: 16543130)
Neuron. 2015 Jul 15;87(2):257-70. (PMID: 26182413)
Hum Brain Mapp. 2010 Sep;31(9):1316-26. (PMID: 20087840)
Neuroimage. 2021 Aug 15;237:118220. (PMID: 34058335)
Neuroimage. 2007 Oct 1;37(4):1315-28. (PMID: 17689268)
J Neurosci. 2015 Mar 25;35(12):4789-91. (PMID: 25810509)
J Vis Exp. 2023 Aug 4;(198):. (PMID: 37677038)
Front Hum Neurosci. 2012 Aug 13;6:233. (PMID: 22905026)
Neuron. 2023 Jun 7;111(11):1697-1713. (PMID: 37040765)
Trends Cogn Sci. 2023 Nov;27(11):981-982. (PMID: 37666724)
Hum Brain Mapp. 2024 Aug 1;45(11):e26762. (PMID: 39037079)
Comput Biomed Res. 1996 Jun;29(3):162-73. (PMID: 8812068)
J Neurosci. 2016 Jul 20;36(29):7648-62. (PMID: 27445143)
Neuroimage. 2014 Jan 1;84:320-41. (PMID: 23994314)
Neuropsychologia. 2010 May;48(6):1607-15. (PMID: 20138900)
Neuron. 2002 Sep 12;35(6):1167-75. (PMID: 12354405)
Cereb Cortex. 2009 Nov;19(11):2736-45. (PMID: 19321652)
J Neurosci. 2017 Feb 15;37(7):1733-1746. (PMID: 28077725)
Curr Opin Neurobiol. 2003 Aug;13(4):428-32. (PMID: 12965289)
J Cogn Neurosci. 2017 Feb;29(2):221-234. (PMID: 27991030)
Neuroimage. 2002 Oct;17(2):825-41. (PMID: 12377157)
Cogn Process. 2007 Sep;8(3):159-66. (PMID: 17429704)
J Neurophysiol. 2010 Jul;104(1):128-40. (PMID: 20445039)
Neuroimage. 2009 Oct 15;48(1):63-72. (PMID: 19573611)
Trends Cogn Sci. 2009 Mar;13(3):127-34. (PMID: 19217822)
Neuroimage. 2020 Feb 1;206:116189. (PMID: 31521825)
Med Image Anal. 2008 Feb;12(1):26-41. (PMID: 17659998)
Cereb Cortex. 2017 Aug 1;27(8):4277-4291. (PMID: 28591837)
J Vis. 2011 Sep 14;11(5):. (PMID: 21917784)
Science. 2001 Sep 28;293(5539):2470-3. (PMID: 11577239)
PLoS Comput Biol. 2014 Apr 17;10(4):e1003553. (PMID: 24743308)
J Physiol Paris. 2006 Jun;99(4-6):396-405. (PMID: 16723210)
J Neurosci. 2011 Mar 9;31(10):3743-56. (PMID: 21389229)
Curr Opin Neurobiol. 2013 Jun;23(3):450-5. (PMID: 23266245)
Cereb Cortex. 2015 Nov;25(11):4596-609. (PMID: 26048954)
J Neurosci. 2023 Jan 4;43(1):125-141. (PMID: 36347621)
Contributed Indexing: Keywords: Action observation; Attention; Decoding analysis; FMRI; Representational similarity analysis; Top-down modulation
Entry Date(s): Date Created: 20251110 Date Completed: 20251113 Latest Revision: 20251221
Update Code: 20251221
PubMed Central ID: PMC12602651
DOI: 10.1007/s00429-025-03042-z
PMID: 41212319
Database: MEDLINE
Be the first to leave a comment!
You must be logged in first