Revisiting PSF models: Unifying framework and high-performance implementation.

Saved in:
Bibliographic Details
Title: Revisiting PSF models: Unifying framework and high-performance implementation.
Authors: Liu Y; Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland., Stergiopoulou V; Audiovisual Communications Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.; Galatea Laboratory, École Polytechnique Fédérale de Lausanne, Neuchâtel, Switzerland., Chuah J; Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland., Bezzam E; Audiovisual Communications Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland., Both GJ; HHMI Janelia Research Campus, Ashburn, Virginia, USA., Unser M; Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland., Sage D; Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland., Dong J; Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Source: Journal of microscopy [J Microsc] 2025 Nov 04. Date of Electronic Publication: 2025 Nov 04.
Publication Model: Ahead of Print
Publication Type: Journal Article
Language: English
Journal Info: Publisher: Published for the Royal Microscopical Society by Blackwell Scientific Publications Country of Publication: England NLM ID: 0204522 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2818 (Electronic) Linking ISSN: 00222720 NLM ISO Abbreviation: J Microsc Subsets: MEDLINE
Imprint Name(s): Original Publication: Oxford, Published for the Royal Microscopical Society by Blackwell Scientific Publications.
Abstract: Localisation microscopy often relies on detailed models of point-spread functions. For applications such as deconvolution or PSF engineering, accurate models for light propagation in imaging systems with a high numerical aperture are required. Different models have been proposed based on 2D Fourier transforms or 1D Bessel integrals. The most precise ones combine a vectorial description of the electric field and accurate aberration models. However, it may be unclear which model to choose as there is no comprehensive comparison between the Fourier and Bessel approaches yet. Moreover, many existing libraries are written in Java (e.g., our previous PSF generator software) or MATLAB, which hinders their integration into deep learning algorithms. In this work, we start from the original Richards-Wolf integral and revisit both approaches in a systematic way. We present a unifying framework in which we prove the equivalence between the Fourier and Bessel strategies and detail a variety of correction factors applicable to both of them. Then, we provide a high-performance implementation of our theoretical framework in the form of an open-source library that is built on top of PyTorch, a popular library for deep learning. It enables us to benchmark the accuracy and computational speed of different models and allows for an in-depth comparison of the existing models for the first time. We show that the Bessel strategy is optimal for axisymmetric beams, while the Fourier approach can be applied to more general scenarios. Our work enables the efficient computation of a point-spread function on CPU or GPU, which can then be included in simulation and optimisation pipelines.
(© 2025 The Author(s). Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.)
References: Matthews, C., & Cordelieres, F. P. (2010). MetroloJ: An ImageJ plugin to help monitor microscopes' health. In ImageJ User & Developer Conference Proceedings (pp. 1–6). https://imagej.net/events/conferences.
Theer, P., Mongis, C., & Knop, M. (2014). PSFj: Know your fluorescence microscope. Nature Methods, 11(10), 981–982.
Miora, R. H. D., Rohwer, E., Kielhorn, M., Sheppard, C., Bosman, G., & Heintzmann, R. (2024). Calculating point spread functions: Methods, pitfalls, and solutions. Optics Express, 32(16), 27278–27302.
Nelson, G., Alexopoulus, I., Azevedo, M., Barachati, F., Belavaev, Y., Carvalho, M. T., Cesbron, Y., Dauphin, A., Corbett, A. D., & Dobbie, I. M. (2022). Monitoring the point spread function for quality control of confocal microscopes. https://doi.org/10.17504/protocols.io.bp2l61ww1vqe/v1.
Lelek, M., Gyparaki, M. T., Beliu, G., Schueder, F., Griffié, J., Manley, S., Jungmann, R., Sauer, M., Lakadamyali, M., & Zimmer, C. (2021). Single‐molecule localization microscopy. Nature reviews Methods Primers, 1(1), 39.
Sibarita, J.‐B. (2005). Deconvolution microscopy. Microscopy Techniques, 95, 201–243.
Sage, D., Donati, L., Soulez, F., Fortun, D., Schmit, G., Seitz, A., Guiet, R., Vonesch, C., & Unser, M. (2017). DeconvolutionLab2: An open‐source software for deconvolution microscopy. Methods, 115, 28–41.
Heintzmann, R., & Cremer, C. G. (1999). Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating. In Optical Biopsies and Microscopic Techniques III (Vol. 3568, pp. 185–196). SPIE.
Gustafsson, M. G. (2000). Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy, 198(2), 82–87.
Dertinger, T., Colyer, R., Iyer, G., Weiss, S., & Enderlein, J. (2009). Fast, background‐free, 3D super‐resolution optical fluctuation imaging (SOFI). Proceedings of the National Academy of Sciences, 106(52), 22287–22292.
Stergiopoulou, V., Calatroni, L., de Morais Goulart, H., Schaub, S., & Blanc‐Féraud, L. (2022). COL0RME: Super‐resolution microscopy based on sparse blinking/fluctuating fluorophore localization and intensity estimation. Biological Imaging, 2.
Hell, S. W. (2007). Far‐field optical nanoscopy. Science, 316(5828), 1153–1158.
Balzarotti, F., Eilers, Y., Gwosch, K. C., Gynnå, A. H., Westphal, V., Stefani, F. D., Elf, J., & Hell, S. W. (2017). Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science, 355(6325), 606–612.
Marin, Z., Graff, M., Barentine, A. E., Soeller, C., Chung, K. K. H., Fuentes, L. A., & Baddeley, D. (2021). PYMEVisualize: An open‐source tool for exploring 3D super‐resolution data. Nature Methods, 18(6), 582–584.
Richards, B., & Wolf, E. (1959). Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 253(1274), 358–379.
Leutenegger, M., Rao, R., Leitgeb, R. A., & Lasser, T. (2006). Fast focus field calculations. Optics Express, 14(23), 11277–11291.
Aguet, F. (2009). Super‐resolution fluorescence microscopy based on physical models. PhD thesis, EPFL.
Novotny, L., & Hecht, B. (2012). Principles of nano‐optics (2nd ed.). Cambridge University Press, Cambridge.
Gibson, S. F., & Lanni, F. (1991). Experimental test of an analytical model of aberration in an oil‐immersion objective lens used in three‐dimensional light microscopy. Journal of the Optical Society of America A, 8(10), 1601–1613.
Kirshner, H., François, A., Sage, D., & Unser, M. (2013). 3‐D PSF fitting for fluorescence microscopy: Implementation and localization application. Journal of Microscopy, 249(1), 13–25.
Nasse, M. J., & Woehl, J. C. (2010). Realistic modeling of the illumination point spread function in confocal scanning optical microscopy. Journal of the Optical Society of America A, 27(2), 295–302.
Schneider, M. C., Hinterer, F., Jesacher, A., & Schütz, G. J. (2024). Interactive simulation and visualization of point spread functions in single molecule imaging. Optics Communications, 560, 130463.
Caprile, F., Masullo, L. A., & Stefani, F. D. (2022). Pyfocus – A Python package for vectorial calculations of focused optical fields under realistic conditions. Application to toroidal foci. Computer Physics Communications, 275, 108315.
Prigent, S., Nguyen, H.‐N., Leconte, L., Valades‐Cruz, C. A., Hajj, B., Salamero, J., & Kervrann, C. (2023). SPITFIR (e): A supermaneuverable algorithm for fast denoising and deconvolution of 3D fluorescence microscopy images and videos. Scientific Reports, 13(1), 1489.
Li, Y., Mund, M., Hoess, P., Deschamps, J., Matti, U., Nijmeijer, B., Sabinina, V. J., Ellenberg, J., Schoen, I., & Ries, J. (2018). Real‐time 3D single‐molecule localization using experimental point spread functions. Nature Methods, 15(5), 367–369.
Dong, J., Maestre, D., Conrad‐Billroth, C., & Juffmann, T. (2021). Fundamental bounds on the precision of iSCAT, COBRI and dark‐field microscopy for 3D localization and mass photometry. Journal of Physics D: Applied Physics, 54(39), 394002.
Shechtman, Y., Sahl, S. J., Backer, A. S., & Moerner, W. E. (2014). Optimal point spread function design for 3D imaging. Physical Review Letters, 113(13), 133902.
Opatovski, N., Nehme, E., Zoref, N., Barzilai, I., Orange Kedem, R., Ferdman, B., Keselman, P., Alalouf, O., & Shechtman, Y. (2024). Depth‐enhanced high‐throughput microscopy by compact PSF engineering. Nature Communications, 15(1), 4861.
Liu, Y., Dong, J., Maya, J. A., Balzarotti, F., & Unser, M. (2025). Point‐spread‐function engineering in MINFLUX: Ptimality of donut and half‐moon excitation patterns. Optics Letters, 50(1), 37–40.
Sinkó, J., Kákonyi, R., Rees, E., Metcalf, D., Knight, A. E., Kaminski, C. F., Szabó, G., & Erdélyi, M. (2014). TestSTORM: Simulator for optimizing sample labeling and image acquisition in localization based super‐resolution microscopy. Biomedical Optics Express, 5(3), 778–787.
Sage, D., Kirshner, H., Pengo, T., Stuurman, N., Min, J., Manley, S., & Unser, M. (2015). Quantitative evaluation of software packages for single‐molecule localization microscopy. Nature Methods, 12(8), 717–724.
Wieser, S., & Schütz, G. J. (2008). Tracking single molecules in the live cell plasma membrane—Do's and Don't's. Methods, 46(2), 131–140.
Shen, H., Tauzin, L. J., Baiyasi, R., Wang, W., Moringo, N., Shuang, B., & Landes, C. F. (2017). Single particle tracking: From theory to biophysical applications. Chemical Reviews, 117(11), 7331–7376.
Griffié, J., Pham, T., Sieben, C., Lang, R., Cevher, V., Holden, S., Unser, M., Manley, S., & Sage, D. (2020). Virtual‐SMLM, a virtual environment for real‐time interactive SMLM acquisition. bioRxiv.
Bourgeois, D. (2023). Single molecule imaging simulations with advanced fluorophore photophysics. Communications Biology, 6(1), 53.
Török, P., & Varga, P. (1997). Electromagnetic diffraction of light focused through a stratified medium. Applied Optics, 36(11), 2305–2312.
Sofroniew, N., Lambert, T., Evans, K., Nunez‐Iglesias, J., Bokota, G., Winston, P., Peña‐Castellanos, G., Yamauchi, K., Bussonnier, M., Doncila Pop, D., Can Solak, A., Liu, Z., Wadhwa, P., Burt, A., Buckley, G., Sweet, A., Migas, L., Hilsenstein, V., Gaifas, L., … Royer, L. (2019). napari: A multi‐dimensional image viewer for python. Zenodo. https://doi.org/10.5281/zenodo.3555620.
Deb, D., Both, G.‐J., Bezzam, E., Kohli, A., Yang, S., Chaware, A., Allier, C., Cai, C., Anderberg, G., Eybposh, M. H., Schneider, M. C., Heintzmann, R., Rivera‐Sanchez, F. A., Simmerer, C., Meng, G., Tormes‐Vaquerano, J., Han, S., Shanmugavel, S. C., Maruvada, T., & Turaga, S. C. (2025). Chromatix: A differentiable, GPU‐accelerated wave‐optics library. bioRxiv, pages 2025–04.
Debye, P. J. W. (1908). Der lichtdruck auf kugeln von beliebigem material. PhD thesis, Ludwig‐Maximilians Universität München.
Wolf, E., & Li, Y. (1981). Conditions for the validity of the Debye integral representation of focused fields. Optics Communications, 39(4), 205–210.
Egner, A., & Hell, S. (1999). Equivalence of the Huygens–Fresnel and Debye approach for the calculation of high aperture point‐spread functions in the presence of refractive index mismatch. Journal of Microscopy, 193(3), 244–249.
Török, P., Varga, P., Laczik, Z., & Booker, G. (1995). Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: An integral representation. Journal of the Optical Society of America A, 12(2), 325–332.
Goodman, J. (2005). Introduction to Fourier optics. McGraw‐Hill physical and quantum electronics series. W. H. Freeman.
Liu, S., Chen, J., Hellgoth, J., Müller, L.‐R., Ferdman, B., Karras, C., Xiao, D., Lidke, K. A., Heintzmann, R., Shechtman, Y., Li, Y., & Ries, J. (2024). Universal inverse modeling of point spread functions for SMLM localization and microscope characterization. Nature Methods, 21(6), 1082–1093.
Stoer, J., & Bulirsch, R. (2002). Introduction to numerical analysis. Texts in applied mathematics. Vol. 12. New York, NY: Springer New York.
Barker, M., Chue Hong, N. P., Katz, D. S., Lamprecht, A.‐L., Martinez‐Ortiz, C., Psomopoulos, F., Harrow, J., Castro, L. J., Gruenpeter, M., Martinez, P. A., & Honeyman, T. (2022). Introducing the fair principles for research software. Scientific Data, 9(1), 622.
Kao, H. P., & Verkman, A. (1994). Tracking of single fluorescent particles in three dimensions: Use of cylindrical optics to encode particle position. Biophysical Journal, 67(3), 1291–1300.
Belthangady, C., & Royer, L. A. (2019). Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction. Nature Methods, 16(12), 1215–1225.
Weigert, M., Schmidt, U., Boothe, T., Müller, A., Dibrov, A., Jain, A., Wilhelm, B., Schmidt, D., Broaddus, C., Culley, S., Rocha‐Martins, M., Segovia‐Miranda, F., Norden, C., Henriques, R., Zerial, M., Solimena, M., Rink, J., Tomancak, P., Royer, L., & Myers, E. W. (2018). Content‐aware image restoration: Pushing the limits of fluorescence microscopy. Nature Methods, 15(12), 1090–1097.
Li, Y., Su, Y., Guo, M., Han, X., Liu, J., Vishwasrao, H. D., Li, X., Christensen, R., Sengupta, T., Moyle, M. W., Rey‐Suarez, I., Chen, J., Upadhyaya, A., Usdin, T. B., Colón‐Ramos, D. A., Liu, H., Wu, Y., & Shroff, H. (2022). Incorporating the image formation process into deep learning improves network performance. Nature Methods, 19(11), 1427–1437.
Yanny, K., Monakhova, K., Shuai, R. W., & Waller, L. (2022). Deep learning for fast spatially varying deconvolution. Optica, 9(1), 96–99.
Sage, D., Pham, T.‐A., Babcock, H., Lukes, T., Pengo, T., Chao, J., Velmurugan, R., Herbert, A., Agrawal, A., Colabrese, S., Wheeler, A., Archetti, A., Rieger, B., Ober, R., Hagen, G. M., Sibarita, J.‐B., Ries, J., Henriques, R., Unser, M., & Holden, S. (2019). Super‐resolution fight club: Assessment of 2D and 3D single‐molecule localization microscopy software. Nature Methods, 16(5), 387–395.
Nehme, E., Freedman, D., Gordon, R., Ferdman, B., Weiss, L. E., Alalouf, O., Naor, T., Orange, R., Michaeli, T., & Shechtman, Y. (2020). DeepSTORM3D: Dense 3D localization microscopy and PSF design by deep learning. Nature Methods, 17(7), 734–740.
Speiser, A., Müller, L.‐R., Hoess, P., Matti, U., Obara, C. J., Legant, W. R., Kreshuk, A., Macke, J. H., Ries, J., & Turaga, S. C. (2021). Deep learning enables fast and dense single‐molecule localization with high accuracy. Nature Methods, 18(9), 1082–1090.
Kobayashi, H., Solak, A. C., Batson, J., & Royer, L. A. (2020). Image deconvolution via noise‐tolerant self‐supervised inversion. arXiv preprint arXiv:2006.06156.
Cachia, M., Stergiopoulou, V., Calatroni, L., Schaub, S., & Blanc‐Féraud, L. (2023). Fluorescence image deconvolution microscopy via generative adversarial learning (FluoGAN). Inverse Problems, 39(5), 054006.
Grant Information: CRSII5_213521 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung; PZ00P2_216211 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Contributed Indexing: Keywords: localisation microscopy; open‐source library; point‐spread function; vectorial field propagation
Entry Date(s): Date Created: 20251104 Latest Revision: 20251104
Update Code: 20251104
DOI: 10.1111/jmi.70045
PMID: 41186941
Database: MEDLINE
Be the first to leave a comment!
You must be logged in first