Wildfire smoke exposure and mortality burden in the USA under climate change.

Gespeichert in:
Bibliographische Detailangaben
Titel: Wildfire smoke exposure and mortality burden in the USA under climate change.
Autoren: Qiu M; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA. minghao.qiu@stonybrook.edu.; Program in Public Health, Stony Brook University, Stony Brook, NY, USA. minghao.qiu@stonybrook.edu.; Doerr School of Sustainability, Stanford University, Stanford, CA, USA. minghao.qiu@stonybrook.edu.; Center for Innovation in Global Health, Stanford University, Stanford, CA, USA. minghao.qiu@stonybrook.edu., Li J; Center on Food Security and the Environment, Stanford University, Stanford, CA, USA., Gould CF; School of Public Health, University of California San Diego, La Jolla, CA, USA., Jing R; Center for Innovation in Global Health, Stanford University, Stanford, CA, USA.; Woods Institute for the Environment, Stanford University, Stanford, CA, USA.; Department of Health Policy, School of Medicine, Stanford University, Stanford, CA, USA., Kelp M; Doerr School of Sustainability, Stanford University, Stanford, CA, USA., Childs ML; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA., Wen J; Doerr School of Sustainability, Stanford University, Stanford, CA, USA., Xie Y; School of Public Policy and International Affairs, Princeton University, Princeton, NJ, USA., Lin M; National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, NJ, USA., Kiang MV; Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA, USA., Heft-Neal S; Center on Food Security and the Environment, Stanford University, Stanford, CA, USA., Diffenbaugh NS; Doerr School of Sustainability, Stanford University, Stanford, CA, USA., Burke M; Doerr School of Sustainability, Stanford University, Stanford, CA, USA. mburke@stanford.edu.; Center on Food Security and the Environment, Stanford University, Stanford, CA, USA. mburke@stanford.edu.; National Bureau of Economic Research, Cambridge, MA, USA. mburke@stanford.edu.
Quelle: Nature [Nature] 2025 Nov; Vol. 647 (8091), pp. 935-943. Date of Electronic Publication: 2025 Sep 18.
Publikationsart: Journal Article
Sprache: English
Info zur Zeitschrift: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
Imprint Name(s): Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
MeSH-Schlagworte: Wildfires*/statistics & numerical data , Wildfires*/mortality , Smoke*/adverse effects , Smoke*/analysis , Climate Change*/statistics & numerical data , Environmental Exposure*/adverse effects , Environmental Exposure*/statistics & numerical data , Mortality*/trends, United States/epidemiology ; Humans ; Particulate Matter/adverse effects ; Particulate Matter/analysis ; Machine Learning ; Air Pollution/adverse effects ; Air Pollution/statistics & numerical data
Abstract: Competing Interests: Competing interests: The authors declare no competing interests.
Wildfire activity has increased in the USA and is projected to accelerate under future climate change 1-3 . However, our understanding of the impacts of climate change on wildfire activity, smoke and health outcomes remains highly uncertain because of the difficulty of modelling the causal chain from climate to wildfire to air pollution and health. Here we quantify the mortality burden in the USA due to wildfire smoke fine particulate matter (PM 2.5 ) under climate change. We construct an ensemble of statistical and machine learning models that link climate to wildfire smoke PM 2.5 and empirically estimate smoke PM 2.5 -mortality relationships using data on all recorded deaths in the USA. We project that smoke PM 2.5 could result in 71,420 excess deaths (95% confidence interval: 34,930-98,430) per year by 2050 under a high-warming scenario (shared socioeconomic pathway scenario 3-7.0, SSP3-7.0)-a 73% increase relative to the estimated 2011-2020 average annual excess deaths from smoke. Cumulative excess deaths from smoke PM 2.5 could reach 1.9 million between 2026 and 2055. We find evidence for mortality impacts of smoke PM 2.5 that last up to 3 years after exposure. When monetized, climate-driven smoke deaths result in economic damages that exceed existing estimates of climate-driven damages from all other causes combined in the USA 4,5 . Our research suggests that the health impacts of climate-driven wildfire smoke could be among the most important and costly consequences of a warming climate in the USA.
(© 2025. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016). (PMID: 27791053508163710.1073/pnas.1607171113)
Diffenbaugh, N. S., Konings, A. G. & Field, C. B. Atmospheric variability contributes to increasing wildfire weather but not as much as global warming. Proc. Natl Acad. Sci. USA 118, e2117876118 (2021).
Jones, M. W. et al. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 60, e2020RG000726 (2022).
Hsiang, S. et al. Estimating economic damage from climate change in the United States. Science 356, 1362–1369 (2017). (PMID: 2866349610.1126/science.aal4369)
Technical Documentation on the Framework for Evaluating Damages and Impacts (FrEDI) (EPA, 2023).
Iglesias, V., Balch, J. K. & Travis, W. R. U. S. fires became larger, more frequent, and more widespread in the 2000s. Sci. Adv. 8, eabc0020 (2022). (PMID: 35294238892633410.1126/sciadv.abc0020)
McClure, C. D. & Jaffe, D. A. US particulate matter air quality improves except in wildfire-prone areas. Proc. Natl Acad. Sci. USA 115, 7901–7906 (2018). (PMID: 30012611607772110.1073/pnas.1804353115)
O’Dell, K., Ford, B., Fischer, E. V. & Pierce, J. R. Contribution of wildland-fire smoke to US PM 2.5 and its influence on recent trends. Environ. Sci. Technol. 53, 1797–1804 (2019). (PMID: 3068184210.1021/acs.est.8b05430)
Childs, M. L. et al. Daily local-level estimates of ambient wildfire smoke PM2.5 for the contiguous US. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.2c02934 (2022).
Zhang, D. et al. Wildland fires worsened population exposure to PM 2.5 pollution in the contiguous United States. Environ. Sci. Technol. 57, 19990–19998 (2023). (PMID: 379437161070250410.1021/acs.est.3c05143)
Reid, C. E. et al. Critical review of health impacts of wildfire smoke exposure. Environ. Health Perspect. 124, 1334–1343 (2016). (PMID: 27082891501040910.1289/ehp.1409277)
Gould, C. F. et al. Health effects of wildfire smoke exposure. Annu. Rev. Med. https://doi.org/10.1146/annurev-med-052422-020909 (2023).
Chen, G. et al. Mortality risk attributable to wildfire-related PM 2.5 pollution: a global time series study in 749 locations. Lancet Planet. Health 5, e579–e587 (2021). (PMID: 3450867910.1016/S2542-5196(21)00200-X)
Li, Y. et al. Dominance of wildfires impact on air quality exceedances during the 2020 record‐breaking wildfire season in the United States. Geophys. Res. Lett. 48, e2021GL094908 (2021).
Burke, M. et al. The contribution of wildfire to PM 2.5 trends in the USA. Nature https://doi.org/10.1038/s41586-023-06522-6 (2023).
Zhuang, Y., Fu, R., Santer, B. D., Dickinson, R. E. & Hall, A. Quantifying contributions of natural variability and anthropogenic forcings on increased fire weather risk over the western United States. Proc. Natl Acad. Sci. USA 118, e2111875118 (2021).
Zhong, Q., Shen, G., Wang, B., Ma, J. & Tao, S. Climate-driven escalation of global PM 2.5 health burden from wildland fires. Environ. Sci. Technol. 59, 3131–3142 (2025). (PMID: 3983850910.1021/acs.est.4c10320)
Westerling, A. L. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. Lond. B 371, 20150178 (2016).
Law, B. E. et al. Anthropogenic climate change contributes to wildfire particulate matter and related mortality in the United States. Commun. Earth Environ. 6, 336 (2025). (PMID: 403216701204834210.1038/s43247-025-02314-0)
Radeloff, V. C. et al. Rapid growth of the US wildland-urban interface raises wildfire risk. Proc. Natl Acad. Sci. USA 115, 3314–3319 (2018). (PMID: 29531054587968810.1073/pnas.1718850115)
Balch, J. K. et al. Warming weakens the night-time barrier to global fire. Nature 602, 442–448 (2022). (PMID: 3517334210.1038/s41586-021-04325-1)
Hessilt, T. D. et al. Future increases in lightning ignition efficiency and wildfire occurrence expected from drier fuels in boreal forest ecosystems of western North America. Environ. Res. Lett. 17, 054008 (2022). (PMID: 10.1088/1748-9326/ac6311)
Abatzoglou, J. T., Juang, C. S., Williams, A. P., Kolden, C. A. & Westerling, A. L. Increasing synchronous fire danger in forests of the western United States. Geophys. Res. Lett. 48, e2020GL091377 (2021).
Wang, S. S.-C., Leung, L. R. & Qian, Y. Projection of future fire emissions over the contiguous US using explainable artificial intelligence and CMIP6 models. J. Geophys. Res. 128, e2023JD039154 (2023).
Brown, P. T. et al. Climate warming increases extreme daily wildfire growth risk in California. Nature 621, 760–766 (2023). (PMID: 3764886310.1038/s41586-023-06444-3)
Lam, Y. F., Fu, J. S., Wu, S. & Mickley, L. J. Impacts of future climate change and effects of biogenic emissions on surface ozone and particulate matter concentrations in the United States. Atmos. Chem. Phys. 11, 4789–4806 (2011). (PMID: 10.5194/acp-11-4789-2011)
Yue, X., Mickley, L. J., Logan, J. A. & Kaplan, J. O. Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century. Atmos. Environ. 77, 767–780 (2013). (PMID: 10.1016/j.atmosenv.2013.06.003)
Sarangi, C. et al. Projected increases in wildfires may challenge regulatory curtailment of PM 2.5 over the eastern US by 2050. Atmos. Chem. Phys. 23, 1769–1783 (2023). (PMID: 10.5194/acp-23-1769-2023)
Liu, J. C. et al. Future respiratory hospital admissions from wildfire smoke under climate change in the Western US. Environ. Res. Lett. 11, 124018 (2016). (PMID: 10.1088/1748-9326/11/12/124018)
Ford, B. et al. Future fire impacts on smoke concentrations, visibility, and health in the contiguous United States. Geohealth 2, 229–247 (2018). (PMID: 32159016703889610.1029/2018GH000144)
Neumann, J. E. et al. Estimating PM 2.5 -related premature mortality and morbidity associated with future wildfire emissions in the western US. Environ. Res. Lett. 16, 035019 (2021).
Stowell, J. D. et al. Asthma exacerbation due to climate change-induced wildfire smoke in the Western US. Environ. Res. Lett. 17, 014023 (2021). (PMID: 10.1088/1748-9326/ac4138)
Wang, S. S.-C., Qian, Y., Leung, L. R. & Zhang, Y. Interpreting machine learning prediction of fire emissions and comparison with FireMIP process-based models. Atmos. Chem. Phys. 22, 3445–3468 (2022). (PMID: 10.5194/acp-22-3445-2022)
Ye, X. et al. Evaluation and intercomparison of wildfire smoke forecasts from multiple modeling systems for the 2019 Williams Flats fire. Atmos. Chem. Phys. 21, 14427–14469 (2021). (PMID: 10.5194/acp-21-14427-2021)
Carter, T. S. et al. How emissions uncertainty influences the distribution and radiative impacts of smoke from fires in North America. Atmos. Chem. Phys. 20, 2073–2097 (2020). (PMID: 10.5194/acp-20-2073-2020)
Xie, Y., Lin, M. & Horowitz, L. W. Summer PM 2.5 pollution extremes caused by wildfires over the western United States during 2017–2018. Geophys. Res. Lett. 47, e2020GL089429 (2020).
Qiu, M. et al. Evaluating chemical transport and machine learning models for wildfire smoke PM 2.5 : implications for assessment of health impacts. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.4c05922 (2024).
Southworth, E. K. et al. The influence of wildfire smoke on ambient PM 2.5 chemical species concentrations in the contiguous US. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.4c09011 (2025).
Heft-Neal, S. et al. Emergency department visits respond nonlinearly to wildfire smoke. Proc. Natl Acad. Sci. USA 120, e2302409120 (2023). (PMID: 377220351052358910.1073/pnas.2302409120)
Xie, Y. et al. Tripling of western US particulate pollution from wildfires in a warming climate. Proc. Natl Acad. Sci. USA 119, e2111372119 (2022). (PMID: 35344431916846510.1073/pnas.2111372119)
Rennert, K. et al. Comprehensive evidence implies a higher social cost of CO 2 . Nature 610, 687–692 (2022). (PMID: 36049503960586410.1038/s41586-022-05224-9)
van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017). (PMID: 10.5194/essd-9-697-2017)
Ma, Y. et al. Long-term exposure to wildland fire smoke PM 2.5 and mortality in the contiguous United States. Proc. Natl Acad. Sci. USA 121, e2403960121 (2024). (PMID: 393160571145917810.1073/pnas.2403960121)
Zhang, D., Xi, Y., Boffa, D. J., Liu, Y. & Nogueira, L. M. Association of wildfire exposure while recovering from lung cancer surgery with overall survival. JAMA Oncol. 9, 1214–1220 (2023). (PMID: 374985741037538310.1001/jamaoncol.2023.2144)
Elser, H. et al. Wildfire smoke exposure and incident dementia. JAMA Neurol. 82, 40–48 (2025). (PMID: 3958570410.1001/jamaneurol.2024.4058)
Carleton, T. et al. Valuing the global mortality consequences of climate change accounting for adaptation costs and benefits. Q. J. Econ. 137, 2037–2105 (2022). (PMID: 10.1093/qje/qjac020)
Grillakis, M. et al. Climate drivers of global wildfire burned area. Environ. Res. Lett. 17, 045021 (2022). (PMID: 10.1088/1748-9326/ac5fa1)
Abatzoglou, J. T. et al. Projected increases in western US forest fire despite growing fuel constraints. Commun. Earth Environ. 2, 227 (2021). (PMID: 10.1038/s43247-021-00299-0)
Connolly, R. et al. Mortality attributable to PM2.5 from wildland fires in California from 2008 to 2018. Sci. Adv. 10, eadl1252 (2024). (PMID: 388483561116045110.1126/sciadv.adl1252)
Park, C. Y. et al. Future fire-PM 2.5 mortality varies depending on climate and socioeconomic changes. Environ. Res. Lett. 19, 024003 (2024). (PMID: 10.1088/1748-9326/ad1b7d)
Deryugina, T., Heutel, G., Miller, N. H., Molitor, D. & Reif, J. The mortality and medical costs of air pollution: evidence from changes in wind direction. Am. Econ. Rev. 109, 4178–4219 (2019). (PMID: 32189719708018910.1257/aer.20180279)
Weichenthal, S. et al. How low can you go? Air pollution affects mortality at very low levels. Sci. Adv. 8, eabo3381 (2022). (PMID: 36170354951903610.1126/sciadv.abo3381)
Rao, K., Williams, A. P., Diffenbaugh, N. S., Yebra, M. & Konings, A. G. Plant-water sensitivity regulates wildfire vulnerability. Nat. Ecol. Evol. 6, 332–339 (2022). (PMID: 35132185891336510.1038/s41559-021-01654-2)
Schollaert, C. L. et al. Quantifying the smoke-related public health trade-offs of forest management. Nat. Sustain. 7, 130–139 (2023). (PMID: 10.1038/s41893-023-01253-y)
Dickinson, G. N. et al. Health risk implications of volatile organic compounds in wildfire smoke during the 2019 FIREX‐AQ campaign and beyond. Geohealth 6, e2021GH000546 (2022). (PMID: 36017488939387810.1029/2021GH000546)
Gao, Y. et al. Wildfire-related PM 2.5 and cardiovascular mortality: a difference-in-differences analysis in Brazil. Environ. Pollut. 347, 123810 (2024). (PMID: 3849386710.1016/j.envpol.2024.123810)
Gao, Y. et al. Wildfire-related PM 2.5 and cause-specific cancer mortality. Ecotoxicol. Environ. Safety 285, 117023 (2024). (PMID: 3927800110.1016/j.ecoenv.2024.117023)
Kelp, M., Burke, M., Qiu, M., Liu, T. & Diffenbaugh, N. Effect of recent prescribed burning and land management on wildfire burn severity and smoke emissions in the western United States. AGU Adv. 6, e2025AV001682 (2025). (PMID: 10.1029/2025AV001682)
Burke, M. et al. Exposures and behavioural responses to wildfire smoke. Nat. Hum. Behav. 6, 1351–1361 (2022). (PMID: 3579888410.1038/s41562-022-01396-6)
van Donkelaar, A. et al. Monthly global estimates of fine particulate matter and their uncertainty. Environ. Sci. Technol. 55, 15287–15300 (2021). (PMID: 3472461010.1021/acs.est.1c05309)
Buch, J., Williams, A. P., Juang, C. S., Hansen, W. D. & Gentine, P. SMLFire1.0: a stochastic machine learning (SML) model for wildfire activity in the western United States. Geosci. Model Dev. 16, 3407–3433 (2023). (PMID: 10.5194/gmd-16-3407-2023)
Mesinger, F. et al. North American regional reanalysis. Bull. Am. Meteorol. Soc. 87, 343–360 (2006). (PMID: 10.1175/BAMS-87-3-343)
Xia, Y. et al. Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res. 117, D03109 (2012).
Mitchell, K. E. et al. The multi‐institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res. 109, 2003JD003823 (2004). (PMID: 10.1029/2003JD003823)
Commission for Environmental Cooperation (CEC), North American Land Change Monitoring System, Canada Centre for Remote Sensing (CCRS), U.S. Geological Survey (USGS), Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Comisión Nacional Forestal (CONAFOR), Instituto Nacional de Estadística y Geografía (INEGI). North American Environmental Atlas – Land Cover 2015 30m, edn 4.0. https://www.cec.org/north-american-environmental-atlas/land-cover-30m-2015-landsat-and-rapideye/ (2024).
Pullabhotla, H. K., Zahid, M., Heft-Neal, S., Rathi, V. & Burke, M. Global biomass fires and infant mortality. Proc. Natl Acad. Sci. USA 120, e2218210120 (2023). (PMID: 372530101026600310.1073/pnas.2218210120)
Qiu, M., Ratledge, N., Azevedo, I. M. L., Diffenbaugh, N. S. & Burke, M. Drought impacts on the electricity system, emissions, and air quality in the western United States. Proc. Natl Acad. Sci. USA 120, e2300395120 (2023). (PMID: 374108661033479610.1073/pnas.2300395120)
Huang, X. et al. Smoke-weather interaction affects extreme wildfires in diverse coastal regions. Science 379, 457–461 (2023). (PMID: 3673041510.1126/science.add9843)
Urbanski, S. Wildland fire emissions, carbon, and climate: emission factors. For. Ecol. Manage. 317, 51–60 (2014). (PMID: 10.1016/j.foreco.2013.05.045)
Jen, C. N. et al. Speciated and total emission factors of particulate organics from burning western US wildland fuels and their dependence on combustion efficiency. Atmos. Chem. Phys. 19, 1013–1026 (2019). (PMID: 10.5194/acp-19-1013-2019)
Liang, Y. et al. Emissions of organic compounds from western US wildfires and their near-fire transformations. Atmos. Chem. Phys. 22, 9877–9893 (2022). (PMID: 10.5194/acp-22-9877-2022)
Jaffe, D. A. et al. Wildfire and prescribed burning impacts on air quality in the United States. J. Air Waste Manag. Assoc. 70, 583–615 (2020). (PMID: 32240055793299010.1080/10962247.2020.1749731)
Achtemeier, G. L. Measurements of moisture in smoldering smoke and implications for fog. Int. J. Wildland Fire 15, 517 (2006). (PMID: 10.1071/WF05115)
Shen, L., Mickley, L. J. & Murray, L. T. Influence of 2000–2050 climate change on particulate matter in the United States: results from a new statistical model. Atmos. Chem. Phys. 17, 4355–4367 (2017). (PMID: 10.5194/acp-17-4355-2017)
Westervelt, D. M. et al. Quantifying PM 2.5 -meteorology sensitivities in a global climate model. Atmos. Environ. 142, 43–56 (2016). (PMID: 10.1016/j.atmosenv.2016.07.040)
Mickley, L. J., Jacob, D. J., Field, B. D. & Rind, D. Effects of future climate change on regional air pollution episodes in the United States. Geophys. Res. Lett. 31, L24103 (2004).
Barnes, E. A. & Fiore, A. M. Surface ozone variability and the jet position: Implications for projecting future air quality. Geophys. Res. Lett. 40, 2839–2844 (2013). (PMID: 10.1002/grl.50411)
Turner, A. J., Fiore, A. M., Horowitz, L. W. & Bauer, M. Summertime cyclones over the Great Lakes Storm Track from 1860–2100: variability, trends, and association with ozone pollution. Atmos. Chem. Phys. 13, 565–578 (2013). (PMID: 10.5194/acp-13-565-2013)
NCHS. Multiple Cause of Death 1999–2020. National Vital Statistics System (CDC, 2023).
Wei, Y. et al. Exposure-response associations between chronic exposure to fine particulate matter and risks of hospital admission for major cardiovascular diseases: population based cohort study. Brit. Med. J. 384, e076939 (2024). (PMID: 383830411087998310.1136/bmj-2023-076939)
Hsiang, S. Climate econometrics. Annu. Rev. Resour. Econ. 8, 43–75 (2016). (PMID: 10.1146/annurev-resource-100815-095343)
Di, Q. et al. Air pollution and mortality in the Medicare population. N. Engl. J. Med. 376, 2513–2522 (2017). (PMID: 28657878576684810.1056/NEJMoa1702747)
Pope, C. A., Coleman, N., Pond, Z. A. & Burnett, R. T. Fine particulate air pollution and human mortality: 25+ years of cohort studies. Environ. Res. 183, 108924 (2020). (PMID: 3183115510.1016/j.envres.2019.108924)
Krewski, D. et al. Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. Res. Rep. Health Eff. Inst. 140, 5–114 (2009).
Hoek, G. et al. Long-term air pollution exposure and cardio- respiratory mortality: a review. Environ. Health 12, 43 (2013). (PMID: 23714370367982110.1186/1476-069X-12-43)
NCHS. Multiple Cause of Death 1999–2020 on CDC WONDER Online Database, Released 2021: Data Compiled from Data Provided by the 57 Vital Statistics Jurisdictions Through the Vital Statistics Cooperative Program (CDC, 2021); https://wonder.cdc.gov/mcd.html .
O’Dell, K. et al. Estimated mortality and morbidity attributable to smoke plumes in the United States: not just a western US problem. Geohealth 5, e2021GH000457 (2021). (PMID: 34504989842071010.1029/2021GH000457)
US Census Bureau. National Population Projections Tables: Main Series (2023).
Berlin Rubin, N. & Wong-Parodi, G. As California burns: the psychology of wildfire- and wildfire smoke-related migration intentions. Popul. Environ. 44, 15–45 (2022). (PMID: 36032962939956410.1007/s11111-022-00409-w)
McConnell, K. et al. Rare and highly destructive wildfires drive human migration in the U.S. Nat. Commun. 15, 6631 (2024). (PMID: 391033341130045810.1038/s41467-024-50630-4)
EPA Report on the Social Cost of Greenhouse Gases: Estimates Incorporating Recent Scientific Advances (EPA, 2023).
Qiu, M. et al. Data and code for ‘Wildfire smoke exposure and mortality burden in the USA under climate change’. Zenodo https://doi.org/10.5281/zenodo.16855665 (2025).
Substance Nomenclature: 0 (Smoke)
0 (Particulate Matter)
Entry Date(s): Date Created: 20250918 Date Completed: 20251127 Latest Revision: 20251201
Update Code: 20251202
DOI: 10.1038/s41586-025-09611-w
PMID: 40967551
Datenbank: MEDLINE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:cmedm&genre=article&issn=14764687&ISBN=&volume=647&issue=8091&date=20251101&spage=935&pages=935-943&title=Nature&atitle=Wildfire%20smoke%20exposure%20and%20mortality%20burden%20in%20the%20USA%20under%20climate%20change.&aulast=Qiu%20M&id=DOI:10.1038/s41586-025-09611-w
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=M%20Q
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: cmedm
DbLabel: MEDLINE
An: 40967551
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 0
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Wildfire smoke exposure and mortality burden in the USA under climate change.
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AU" term="%22Qiu+M%22">Qiu M</searchLink>; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA. minghao.qiu@stonybrook.edu.; Program in Public Health, Stony Brook University, Stony Brook, NY, USA. minghao.qiu@stonybrook.edu.; Doerr School of Sustainability, Stanford University, Stanford, CA, USA. minghao.qiu@stonybrook.edu.; Center for Innovation in Global Health, Stanford University, Stanford, CA, USA. minghao.qiu@stonybrook.edu.<br /><searchLink fieldCode="AU" term="%22Li+J%22">Li J</searchLink>; Center on Food Security and the Environment, Stanford University, Stanford, CA, USA.<br /><searchLink fieldCode="AU" term="%22Gould+CF%22">Gould CF</searchLink>; School of Public Health, University of California San Diego, La Jolla, CA, USA.<br /><searchLink fieldCode="AU" term="%22Jing+R%22">Jing R</searchLink>; Center for Innovation in Global Health, Stanford University, Stanford, CA, USA.; Woods Institute for the Environment, Stanford University, Stanford, CA, USA.; Department of Health Policy, School of Medicine, Stanford University, Stanford, CA, USA.<br /><searchLink fieldCode="AU" term="%22Kelp+M%22">Kelp M</searchLink>; Doerr School of Sustainability, Stanford University, Stanford, CA, USA.<br /><searchLink fieldCode="AU" term="%22Childs+ML%22">Childs ML</searchLink>; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.<br /><searchLink fieldCode="AU" term="%22Wen+J%22">Wen J</searchLink>; Doerr School of Sustainability, Stanford University, Stanford, CA, USA.<br /><searchLink fieldCode="AU" term="%22Xie+Y%22">Xie Y</searchLink>; School of Public Policy and International Affairs, Princeton University, Princeton, NJ, USA.<br /><searchLink fieldCode="AU" term="%22Lin+M%22">Lin M</searchLink>; National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, NJ, USA.<br /><searchLink fieldCode="AU" term="%22Kiang+MV%22">Kiang MV</searchLink>; Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA, USA.<br /><searchLink fieldCode="AU" term="%22Heft-Neal+S%22">Heft-Neal S</searchLink>; Center on Food Security and the Environment, Stanford University, Stanford, CA, USA.<br /><searchLink fieldCode="AU" term="%22Diffenbaugh+NS%22">Diffenbaugh NS</searchLink>; Doerr School of Sustainability, Stanford University, Stanford, CA, USA.<br /><searchLink fieldCode="AU" term="%22Burke+M%22">Burke M</searchLink>; Doerr School of Sustainability, Stanford University, Stanford, CA, USA. mburke@stanford.edu.; Center on Food Security and the Environment, Stanford University, Stanford, CA, USA. mburke@stanford.edu.; National Bureau of Economic Research, Cambridge, MA, USA. mburke@stanford.edu.
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <searchLink fieldCode="JN" term="%220410462%22">Nature</searchLink> [Nature] 2025 Nov; Vol. 647 (8091), pp. 935-943. <i>Date of Electronic Publication: </i>2025 Sep 18.
– Name: TypePub
  Label: Publication Type
  Group: TypPub
  Data: Journal Article
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: TitleSource
  Label: Journal Info
  Group: Src
  Data: <i>Publisher: </i><searchLink fieldCode="PB" term="%22Nature+Publishing+Group%22">Nature Publishing Group </searchLink><i>Country of Publication: </i>England <i>NLM ID: </i>0410462 <i>Publication Model: </i>Print-Electronic <i>Cited Medium: </i>Internet <i>ISSN: </i>1476-4687 (Electronic) <i>Linking ISSN: </i><searchLink fieldCode="IS" term="%2200280836%22">00280836 </searchLink><i>NLM ISO Abbreviation: </i>Nature <i>Subsets: </i>MEDLINE
– Name: PublisherInfo
  Label: Imprint Name(s)
  Group: PubInfo
  Data: <i>Publication</i>: Basingstoke : Nature Publishing Group<br /><i>Original Publication</i>: London, Macmillan Journals ltd.
– Name: SubjectMESH
  Label: MeSH Terms
  Group: Su
  Data: <searchLink fieldCode="MM" term="%22Wildfires%22">Wildfires*</searchLink>/<searchLink fieldCode="MM" term="%22Wildfires+statistics+%26+numerical+data%22">statistics & numerical data</searchLink> <br /><searchLink fieldCode="MM" term="%22Wildfires%22">Wildfires*</searchLink>/<searchLink fieldCode="MM" term="%22Wildfires+mortality%22">mortality</searchLink> <br /><searchLink fieldCode="MM" term="%22Smoke%22">Smoke*</searchLink>/<searchLink fieldCode="MM" term="%22Smoke+adverse+effects%22">adverse effects</searchLink> <br /><searchLink fieldCode="MM" term="%22Smoke%22">Smoke*</searchLink>/<searchLink fieldCode="MM" term="%22Smoke+analysis%22">analysis</searchLink> <br /><searchLink fieldCode="MM" term="%22Climate+Change%22">Climate Change*</searchLink>/<searchLink fieldCode="MM" term="%22Climate+Change+statistics+%26+numerical+data%22">statistics & numerical data</searchLink> <br /><searchLink fieldCode="MM" term="%22Environmental+Exposure%22">Environmental Exposure*</searchLink>/<searchLink fieldCode="MM" term="%22Environmental+Exposure+adverse+effects%22">adverse effects</searchLink> <br /><searchLink fieldCode="MM" term="%22Environmental+Exposure%22">Environmental Exposure*</searchLink>/<searchLink fieldCode="MM" term="%22Environmental+Exposure+statistics+%26+numerical+data%22">statistics & numerical data</searchLink> <br /><searchLink fieldCode="MM" term="%22Mortality%22">Mortality*</searchLink>/<searchLink fieldCode="MM" term="%22Mortality+trends%22">trends</searchLink><br /><searchLink fieldCode="MH" term="%22United+States%22">United States</searchLink>/<searchLink fieldCode="MH" term="%22United+States+epidemiology%22">epidemiology</searchLink> ; <searchLink fieldCode="MH" term="%22Humans%22">Humans</searchLink> ; <searchLink fieldCode="MH" term="%22Particulate+Matter%22">Particulate Matter</searchLink>/<searchLink fieldCode="MH" term="%22Particulate+Matter+adverse+effects%22">adverse effects</searchLink> ; <searchLink fieldCode="MH" term="%22Particulate+Matter%22">Particulate Matter</searchLink>/<searchLink fieldCode="MH" term="%22Particulate+Matter+analysis%22">analysis</searchLink> ; <searchLink fieldCode="MH" term="%22Machine+Learning%22">Machine Learning</searchLink> ; <searchLink fieldCode="MH" term="%22Air+Pollution%22">Air Pollution</searchLink>/<searchLink fieldCode="MH" term="%22Air+Pollution+adverse+effects%22">adverse effects</searchLink> ; <searchLink fieldCode="MH" term="%22Air+Pollution%22">Air Pollution</searchLink>/<searchLink fieldCode="MH" term="%22Air+Pollution+statistics+%26+numerical+data%22">statistics & numerical data</searchLink>
– Name: Abstract
  Label: Abstract
  Group: Ab
  Data: Competing Interests: Competing interests: The authors declare no competing interests.<br />Wildfire activity has increased in the USA and is projected to accelerate under future climate change <superscript>1-3</superscript> . However, our understanding of the impacts of climate change on wildfire activity, smoke and health outcomes remains highly uncertain because of the difficulty of modelling the causal chain from climate to wildfire to air pollution and health. Here we quantify the mortality burden in the USA due to wildfire smoke fine particulate matter (PM <subscript>2.5</subscript> ) under climate change. We construct an ensemble of statistical and machine learning models that link climate to wildfire smoke PM <subscript>2.5</subscript> and empirically estimate smoke PM <subscript>2.5</subscript> -mortality relationships using data on all recorded deaths in the USA. We project that smoke PM <subscript>2.5</subscript> could result in 71,420 excess deaths (95% confidence interval: 34,930-98,430) per year by 2050 under a high-warming scenario (shared socioeconomic pathway scenario 3-7.0, SSP3-7.0)-a 73% increase relative to the estimated 2011-2020 average annual excess deaths from smoke. Cumulative excess deaths from smoke PM <subscript>2.5</subscript> could reach 1.9 million between 2026 and 2055. We find evidence for mortality impacts of smoke PM <subscript>2.5</subscript> that last up to 3 years after exposure. When monetized, climate-driven smoke deaths result in economic damages that exceed existing estimates of climate-driven damages from all other causes combined in the USA <superscript>4,5</superscript> . Our research suggests that the health impacts of climate-driven wildfire smoke could be among the most important and costly consequences of a warming climate in the USA.<br /> (© 2025. The Author(s), under exclusive licence to Springer Nature Limited.)
– Name: Ref
  Label: References
  Group: RefInfo
  Data: Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016). (PMID: <searchLink fieldCode="PM" term="%2227791053508163710%2E1073%2Fpnas%2E1607171113%22">27791053508163710.1073/pnas.1607171113)</searchLink><br />Diffenbaugh, N. S., Konings, A. G. & Field, C. B. Atmospheric variability contributes to increasing wildfire weather but not as much as global warming. Proc. Natl Acad. Sci. USA 118, e2117876118 (2021).<br />Jones, M. W. et al. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 60, e2020RG000726 (2022).<br />Hsiang, S. et al. Estimating economic damage from climate change in the United States. Science 356, 1362–1369 (2017). (PMID: <searchLink fieldCode="PM" term="%222866349610%2E1126%2Fscience%2Eaal4369%22">2866349610.1126/science.aal4369)</searchLink><br />Technical Documentation on the Framework for Evaluating Damages and Impacts (FrEDI) (EPA, 2023).<br />Iglesias, V., Balch, J. K. & Travis, W. R. U. S. fires became larger, more frequent, and more widespread in the 2000s. Sci. Adv. 8, eabc0020 (2022). (PMID: <searchLink fieldCode="PM" term="%2235294238892633410%2E1126%2Fsciadv%2Eabc0020%22">35294238892633410.1126/sciadv.abc0020)</searchLink><br />McClure, C. D. & Jaffe, D. A. US particulate matter air quality improves except in wildfire-prone areas. Proc. Natl Acad. Sci. USA 115, 7901–7906 (2018). (PMID: <searchLink fieldCode="PM" term="%2230012611607772110%2E1073%2Fpnas%2E1804353115%22">30012611607772110.1073/pnas.1804353115)</searchLink><br />O’Dell, K., Ford, B., Fischer, E. V. & Pierce, J. R. Contribution of wildland-fire smoke to US PM <subscript>2.5</subscript> and its influence on recent trends. Environ. Sci. Technol. 53, 1797–1804 (2019). (PMID: <searchLink fieldCode="PM" term="%223068184210%2E1021%2Facs%2Eest%2E8b05430%22">3068184210.1021/acs.est.8b05430)</searchLink><br />Childs, M. L. et al. Daily local-level estimates of ambient wildfire smoke PM2.5 for the contiguous US. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.2c02934 (2022).<br />Zhang, D. et al. Wildland fires worsened population exposure to PM <subscript>2.5</subscript> pollution in the contiguous United States. Environ. Sci. Technol. 57, 19990–19998 (2023). (PMID: <searchLink fieldCode="PM" term="%22379437161070250410%2E1021%2Facs%2Eest%2E3c05143%22">379437161070250410.1021/acs.est.3c05143)</searchLink><br />Reid, C. E. et al. Critical review of health impacts of wildfire smoke exposure. Environ. Health Perspect. 124, 1334–1343 (2016). (PMID: <searchLink fieldCode="PM" term="%2227082891501040910%2E1289%2Fehp%2E1409277%22">27082891501040910.1289/ehp.1409277)</searchLink><br />Gould, C. F. et al. Health effects of wildfire smoke exposure. Annu. Rev. Med. https://doi.org/10.1146/annurev-med-052422-020909 (2023).<br />Chen, G. et al. Mortality risk attributable to wildfire-related PM <subscript>2.5</subscript> pollution: a global time series study in 749 locations. Lancet Planet. Health 5, e579–e587 (2021). (PMID: <searchLink fieldCode="PM" term="%223450867910%2E1016%2FS2542-5196%2821%2900200-X%22">3450867910.1016/S2542-5196(21)00200-X)</searchLink><br />Li, Y. et al. Dominance of wildfires impact on air quality exceedances during the 2020 record‐breaking wildfire season in the United States. Geophys. Res. Lett. 48, e2021GL094908 (2021).<br />Burke, M. et al. The contribution of wildfire to PM <subscript>2.5</subscript> trends in the USA. Nature https://doi.org/10.1038/s41586-023-06522-6 (2023).<br />Zhuang, Y., Fu, R., Santer, B. D., Dickinson, R. E. & Hall, A. Quantifying contributions of natural variability and anthropogenic forcings on increased fire weather risk over the western United States. Proc. Natl Acad. Sci. USA 118, e2111875118 (2021).<br />Zhong, Q., Shen, G., Wang, B., Ma, J. & Tao, S. Climate-driven escalation of global PM <subscript>2.5</subscript> health burden from wildland fires. Environ. Sci. Technol. 59, 3131–3142 (2025). (PMID: <searchLink fieldCode="PM" term="%223983850910%2E1021%2Facs%2Eest%2E4c10320%22">3983850910.1021/acs.est.4c10320)</searchLink><br />Westerling, A. L. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. Lond. B 371, 20150178 (2016).<br />Law, B. E. et al. Anthropogenic climate change contributes to wildfire particulate matter and related mortality in the United States. Commun. Earth Environ. 6, 336 (2025). (PMID: <searchLink fieldCode="PM" term="%22403216701204834210%2E1038%2Fs43247-025-02314-0%22">403216701204834210.1038/s43247-025-02314-0)</searchLink><br />Radeloff, V. C. et al. Rapid growth of the US wildland-urban interface raises wildfire risk. Proc. Natl Acad. Sci. USA 115, 3314–3319 (2018). (PMID: <searchLink fieldCode="PM" term="%2229531054587968810%2E1073%2Fpnas%2E1718850115%22">29531054587968810.1073/pnas.1718850115)</searchLink><br />Balch, J. K. et al. Warming weakens the night-time barrier to global fire. Nature 602, 442–448 (2022). (PMID: <searchLink fieldCode="PM" term="%223517334210%2E1038%2Fs41586-021-04325-1%22">3517334210.1038/s41586-021-04325-1)</searchLink><br />Hessilt, T. D. et al. Future increases in lightning ignition efficiency and wildfire occurrence expected from drier fuels in boreal forest ecosystems of western North America. Environ. Res. Lett. 17, 054008 (2022). (PMID: <searchLink fieldCode="PM" term="%2210%2E1088%2F1748-9326%2Fac6311%22">10.1088/1748-9326/ac6311)</searchLink><br />Abatzoglou, J. T., Juang, C. S., Williams, A. P., Kolden, C. A. & Westerling, A. L. Increasing synchronous fire danger in forests of the western United States. Geophys. Res. Lett. 48, e2020GL091377 (2021).<br />Wang, S. S.-C., Leung, L. R. & Qian, Y. Projection of future fire emissions over the contiguous US using explainable artificial intelligence and CMIP6 models. J. Geophys. Res. 128, e2023JD039154 (2023).<br />Brown, P. T. et al. Climate warming increases extreme daily wildfire growth risk in California. Nature 621, 760–766 (2023). (PMID: <searchLink fieldCode="PM" term="%223764886310%2E1038%2Fs41586-023-06444-3%22">3764886310.1038/s41586-023-06444-3)</searchLink><br />Lam, Y. F., Fu, J. S., Wu, S. & Mickley, L. J. Impacts of future climate change and effects of biogenic emissions on surface ozone and particulate matter concentrations in the United States. Atmos. Chem. Phys. 11, 4789–4806 (2011). (PMID: <searchLink fieldCode="PM" term="%2210%2E5194%2Facp-11-4789-2011%22">10.5194/acp-11-4789-2011)</searchLink><br />Yue, X., Mickley, L. J., Logan, J. A. & Kaplan, J. O. Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century. Atmos. Environ. 77, 767–780 (2013). (PMID: <searchLink fieldCode="PM" term="%2210%2E1016%2Fj%2Eatmosenv%2E2013%2E06%2E003%22">10.1016/j.atmosenv.2013.06.003)</searchLink><br />Sarangi, C. et al. Projected increases in wildfires may challenge regulatory curtailment of PM <subscript>2.5</subscript> over the eastern US by 2050. Atmos. Chem. Phys. 23, 1769–1783 (2023). (PMID: <searchLink fieldCode="PM" term="%2210%2E5194%2Facp-23-1769-2023%22">10.5194/acp-23-1769-2023)</searchLink><br />Liu, J. C. et al. Future respiratory hospital admissions from wildfire smoke under climate change in the Western US. Environ. Res. Lett. 11, 124018 (2016). (PMID: <searchLink fieldCode="PM" term="%2210%2E1088%2F1748-9326%2F11%2F12%2F124018%22">10.1088/1748-9326/11/12/124018)</searchLink><br />Ford, B. et al. Future fire impacts on smoke concentrations, visibility, and health in the contiguous United States. Geohealth 2, 229–247 (2018). (PMID: <searchLink fieldCode="PM" term="%2232159016703889610%2E1029%2F2018GH000144%22">32159016703889610.1029/2018GH000144)</searchLink><br />Neumann, J. E. et al. Estimating PM <subscript>2.5</subscript> -related premature mortality and morbidity associated with future wildfire emissions in the western US. Environ. Res. Lett. 16, 035019 (2021).<br />Stowell, J. D. et al. Asthma exacerbation due to climate change-induced wildfire smoke in the Western US. Environ. Res. Lett. 17, 014023 (2021). (PMID: <searchLink fieldCode="PM" term="%2210%2E1088%2F1748-9326%2Fac4138%22">10.1088/1748-9326/ac4138)</searchLink><br />Wang, S. S.-C., Qian, Y., Leung, L. R. & Zhang, Y. Interpreting machine learning prediction of fire emissions and comparison with FireMIP process-based models. Atmos. Chem. Phys. 22, 3445–3468 (2022). (PMID: <searchLink fieldCode="PM" term="%2210%2E5194%2Facp-22-3445-2022%22">10.5194/acp-22-3445-2022)</searchLink><br />Ye, X. et al. Evaluation and intercomparison of wildfire smoke forecasts from multiple modeling systems for the 2019 Williams Flats fire. Atmos. Chem. Phys. 21, 14427–14469 (2021). (PMID: <searchLink fieldCode="PM" term="%2210%2E5194%2Facp-21-14427-2021%22">10.5194/acp-21-14427-2021)</searchLink><br />Carter, T. S. et al. How emissions uncertainty influences the distribution and radiative impacts of smoke from fires in North America. Atmos. Chem. Phys. 20, 2073–2097 (2020). (PMID: <searchLink fieldCode="PM" term="%2210%2E5194%2Facp-20-2073-2020%22">10.5194/acp-20-2073-2020)</searchLink><br />Xie, Y., Lin, M. & Horowitz, L. W. Summer PM <subscript>2.5</subscript> pollution extremes caused by wildfires over the western United States during 2017–2018. Geophys. Res. Lett. 47, e2020GL089429 (2020).<br />Qiu, M. et al. Evaluating chemical transport and machine learning models for wildfire smoke PM <subscript>2.5</subscript> : implications for assessment of health impacts. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.4c05922 (2024).<br />Southworth, E. K. et al. The influence of wildfire smoke on ambient PM <subscript>2.5</subscript> chemical species concentrations in the contiguous US. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.4c09011 (2025).<br />Heft-Neal, S. et al. Emergency department visits respond nonlinearly to wildfire smoke. Proc. Natl Acad. Sci. USA 120, e2302409120 (2023). (PMID: <searchLink fieldCode="PM" term="%22377220351052358910%2E1073%2Fpnas%2E2302409120%22">377220351052358910.1073/pnas.2302409120)</searchLink><br />Xie, Y. et al. Tripling of western US particulate pollution from wildfires in a warming climate. Proc. Natl Acad. Sci. USA 119, e2111372119 (2022). (PMID: <searchLink fieldCode="PM" term="%2235344431916846510%2E1073%2Fpnas%2E2111372119%22">35344431916846510.1073/pnas.2111372119)</searchLink><br />Rennert, K. et al. Comprehensive evidence implies a higher social cost of CO <subscript>2</subscript> . Nature 610, 687–692 (2022). (PMID: <searchLink fieldCode="PM" term="%2236049503960586410%2E1038%2Fs41586-022-05224-9%22">36049503960586410.1038/s41586-022-05224-9)</searchLink><br />van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017). (PMID: <searchLink fieldCode="PM" term="%2210%2E5194%2Fessd-9-697-2017%22">10.5194/essd-9-697-2017)</searchLink><br />Ma, Y. et al. Long-term exposure to wildland fire smoke PM <subscript>2.5</subscript> and mortality in the contiguous United States. Proc. Natl Acad. Sci. USA 121, e2403960121 (2024). (PMID: <searchLink fieldCode="PM" term="%22393160571145917810%2E1073%2Fpnas%2E2403960121%22">393160571145917810.1073/pnas.2403960121)</searchLink><br />Zhang, D., Xi, Y., Boffa, D. J., Liu, Y. & Nogueira, L. M. Association of wildfire exposure while recovering from lung cancer surgery with overall survival. JAMA Oncol. 9, 1214–1220 (2023). (PMID: <searchLink fieldCode="PM" term="%22374985741037538310%2E1001%2Fjamaoncol%2E2023%2E2144%22">374985741037538310.1001/jamaoncol.2023.2144)</searchLink><br />Elser, H. et al. Wildfire smoke exposure and incident dementia. JAMA Neurol. 82, 40–48 (2025). (PMID: <searchLink fieldCode="PM" term="%223958570410%2E1001%2Fjamaneurol%2E2024%2E4058%22">3958570410.1001/jamaneurol.2024.4058)</searchLink><br />Carleton, T. et al. Valuing the global mortality consequences of climate change accounting for adaptation costs and benefits. Q. J. Econ. 137, 2037–2105 (2022). (PMID: <searchLink fieldCode="PM" term="%2210%2E1093%2Fqje%2Fqjac020%22">10.1093/qje/qjac020)</searchLink><br />Grillakis, M. et al. Climate drivers of global wildfire burned area. Environ. Res. Lett. 17, 045021 (2022). (PMID: <searchLink fieldCode="PM" term="%2210%2E1088%2F1748-9326%2Fac5fa1%22">10.1088/1748-9326/ac5fa1)</searchLink><br />Abatzoglou, J. T. et al. Projected increases in western US forest fire despite growing fuel constraints. Commun. Earth Environ. 2, 227 (2021). (PMID: <searchLink fieldCode="PM" term="%2210%2E1038%2Fs43247-021-00299-0%22">10.1038/s43247-021-00299-0)</searchLink><br />Connolly, R. et al. Mortality attributable to PM2.5 from wildland fires in California from 2008 to 2018. Sci. Adv. 10, eadl1252 (2024). (PMID: <searchLink fieldCode="PM" term="%22388483561116045110%2E1126%2Fsciadv%2Eadl1252%22">388483561116045110.1126/sciadv.adl1252)</searchLink><br />Park, C. Y. et al. Future fire-PM <subscript>2.5</subscript> mortality varies depending on climate and socioeconomic changes. Environ. Res. Lett. 19, 024003 (2024). (PMID: <searchLink fieldCode="PM" term="%2210%2E1088%2F1748-9326%2Fad1b7d%22">10.1088/1748-9326/ad1b7d)</searchLink><br />Deryugina, T., Heutel, G., Miller, N. H., Molitor, D. & Reif, J. The mortality and medical costs of air pollution: evidence from changes in wind direction. Am. Econ. Rev. 109, 4178–4219 (2019). (PMID: <searchLink fieldCode="PM" term="%2232189719708018910%2E1257%2Faer%2E20180279%22">32189719708018910.1257/aer.20180279)</searchLink><br />Weichenthal, S. et al. How low can you go? Air pollution affects mortality at very low levels. Sci. Adv. 8, eabo3381 (2022). (PMID: <searchLink fieldCode="PM" term="%2236170354951903610%2E1126%2Fsciadv%2Eabo3381%22">36170354951903610.1126/sciadv.abo3381)</searchLink><br />Rao, K., Williams, A. P., Diffenbaugh, N. S., Yebra, M. & Konings, A. G. Plant-water sensitivity regulates wildfire vulnerability. Nat. Ecol. Evol. 6, 332–339 (2022). (PMID: <searchLink fieldCode="PM" term="%2235132185891336510%2E1038%2Fs41559-021-01654-2%22">35132185891336510.1038/s41559-021-01654-2)</searchLink><br />Schollaert, C. L. et al. Quantifying the smoke-related public health trade-offs of forest management. Nat. Sustain. 7, 130–139 (2023). (PMID: <searchLink fieldCode="PM" term="%2210%2E1038%2Fs41893-023-01253-y%22">10.1038/s41893-023-01253-y)</searchLink><br />Dickinson, G. N. et al. Health risk implications of volatile organic compounds in wildfire smoke during the 2019 FIREX‐AQ campaign and beyond. Geohealth 6, e2021GH000546 (2022). (PMID: <searchLink fieldCode="PM" term="%2236017488939387810%2E1029%2F2021GH000546%22">36017488939387810.1029/2021GH000546)</searchLink><br />Gao, Y. et al. Wildfire-related PM <subscript>2.5</subscript> and cardiovascular mortality: a difference-in-differences analysis in Brazil. Environ. Pollut. 347, 123810 (2024). (PMID: <searchLink fieldCode="PM" term="%223849386710%2E1016%2Fj%2Eenvpol%2E2024%2E123810%22">3849386710.1016/j.envpol.2024.123810)</searchLink><br />Gao, Y. et al. Wildfire-related PM <subscript>2.5</subscript> and cause-specific cancer mortality. Ecotoxicol. Environ. Safety 285, 117023 (2024). (PMID: <searchLink fieldCode="PM" term="%223927800110%2E1016%2Fj%2Eecoenv%2E2024%2E117023%22">3927800110.1016/j.ecoenv.2024.117023)</searchLink><br />Kelp, M., Burke, M., Qiu, M., Liu, T. & Diffenbaugh, N. Effect of recent prescribed burning and land management on wildfire burn severity and smoke emissions in the western United States. AGU Adv. 6, e2025AV001682 (2025). (PMID: <searchLink fieldCode="PM" term="%2210%2E1029%2F2025AV001682%22">10.1029/2025AV001682)</searchLink><br />Burke, M. et al. Exposures and behavioural responses to wildfire smoke. Nat. Hum. Behav. 6, 1351–1361 (2022). (PMID: <searchLink fieldCode="PM" term="%223579888410%2E1038%2Fs41562-022-01396-6%22">3579888410.1038/s41562-022-01396-6)</searchLink><br />van Donkelaar, A. et al. Monthly global estimates of fine particulate matter and their uncertainty. Environ. Sci. Technol. 55, 15287–15300 (2021). (PMID: <searchLink fieldCode="PM" term="%223472461010%2E1021%2Facs%2Eest%2E1c05309%22">3472461010.1021/acs.est.1c05309)</searchLink><br />Buch, J., Williams, A. P., Juang, C. S., Hansen, W. D. & Gentine, P. SMLFire1.0: a stochastic machine learning (SML) model for wildfire activity in the western United States. Geosci. Model Dev. 16, 3407–3433 (2023). (PMID: <searchLink fieldCode="PM" term="%2210%2E5194%2Fgmd-16-3407-2023%22">10.5194/gmd-16-3407-2023)</searchLink><br />Mesinger, F. et al. North American regional reanalysis. Bull. Am. Meteorol. Soc. 87, 343–360 (2006). (PMID: <searchLink fieldCode="PM" term="%2210%2E1175%2FBAMS-87-3-343%22">10.1175/BAMS-87-3-343)</searchLink><br />Xia, Y. et al. Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res. 117, D03109 (2012).<br />Mitchell, K. E. et al. The multi‐institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res. 109, 2003JD003823 (2004). (PMID: <searchLink fieldCode="PM" term="%2210%2E1029%2F2003JD003823%22">10.1029/2003JD003823)</searchLink><br />Commission for Environmental Cooperation (CEC), North American Land Change Monitoring System, Canada Centre for Remote Sensing (CCRS), U.S. Geological Survey (USGS), Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Comisión Nacional Forestal (CONAFOR), Instituto Nacional de Estadística y Geografía (INEGI). North American Environmental Atlas – Land Cover 2015 30m, edn 4.0. https://www.cec.org/north-american-environmental-atlas/land-cover-30m-2015-landsat-and-rapideye/ (2024).<br />Pullabhotla, H. K., Zahid, M., Heft-Neal, S., Rathi, V. & Burke, M. Global biomass fires and infant mortality. Proc. Natl Acad. Sci. USA 120, e2218210120 (2023). (PMID: <searchLink fieldCode="PM" term="%22372530101026600310%2E1073%2Fpnas%2E2218210120%22">372530101026600310.1073/pnas.2218210120)</searchLink><br />Qiu, M., Ratledge, N., Azevedo, I. M. L., Diffenbaugh, N. S. & Burke, M. Drought impacts on the electricity system, emissions, and air quality in the western United States. Proc. Natl Acad. Sci. USA 120, e2300395120 (2023). (PMID: <searchLink fieldCode="PM" term="%22374108661033479610%2E1073%2Fpnas%2E2300395120%22">374108661033479610.1073/pnas.2300395120)</searchLink><br />Huang, X. et al. Smoke-weather interaction affects extreme wildfires in diverse coastal regions. Science 379, 457–461 (2023). (PMID: <searchLink fieldCode="PM" term="%223673041510%2E1126%2Fscience%2Eadd9843%22">3673041510.1126/science.add9843)</searchLink><br />Urbanski, S. Wildland fire emissions, carbon, and climate: emission factors. For. Ecol. Manage. 317, 51–60 (2014). (PMID: <searchLink fieldCode="PM" term="%2210%2E1016%2Fj%2Eforeco%2E2013%2E05%2E045%22">10.1016/j.foreco.2013.05.045)</searchLink><br />Jen, C. N. et al. Speciated and total emission factors of particulate organics from burning western US wildland fuels and their dependence on combustion efficiency. Atmos. Chem. Phys. 19, 1013–1026 (2019). (PMID: <searchLink fieldCode="PM" term="%2210%2E5194%2Facp-19-1013-2019%22">10.5194/acp-19-1013-2019)</searchLink><br />Liang, Y. et al. Emissions of organic compounds from western US wildfires and their near-fire transformations. Atmos. Chem. Phys. 22, 9877–9893 (2022). (PMID: <searchLink fieldCode="PM" term="%2210%2E5194%2Facp-22-9877-2022%22">10.5194/acp-22-9877-2022)</searchLink><br />Jaffe, D. A. et al. Wildfire and prescribed burning impacts on air quality in the United States. J. Air Waste Manag. Assoc. 70, 583–615 (2020). (PMID: <searchLink fieldCode="PM" term="%2232240055793299010%2E1080%2F10962247%2E2020%2E1749731%22">32240055793299010.1080/10962247.2020.1749731)</searchLink><br />Achtemeier, G. L. Measurements of moisture in smoldering smoke and implications for fog. Int. J. Wildland Fire 15, 517 (2006). (PMID: <searchLink fieldCode="PM" term="%2210%2E1071%2FWF05115%22">10.1071/WF05115)</searchLink><br />Shen, L., Mickley, L. J. & Murray, L. T. Influence of 2000–2050 climate change on particulate matter in the United States: results from a new statistical model. Atmos. Chem. Phys. 17, 4355–4367 (2017). (PMID: <searchLink fieldCode="PM" term="%2210%2E5194%2Facp-17-4355-2017%22">10.5194/acp-17-4355-2017)</searchLink><br />Westervelt, D. M. et al. Quantifying PM <subscript>2.5</subscript> -meteorology sensitivities in a global climate model. Atmos. Environ. 142, 43–56 (2016). (PMID: <searchLink fieldCode="PM" term="%2210%2E1016%2Fj%2Eatmosenv%2E2016%2E07%2E040%22">10.1016/j.atmosenv.2016.07.040)</searchLink><br />Mickley, L. J., Jacob, D. J., Field, B. D. & Rind, D. Effects of future climate change on regional air pollution episodes in the United States. Geophys. Res. Lett. 31, L24103 (2004).<br />Barnes, E. A. & Fiore, A. M. Surface ozone variability and the jet position: Implications for projecting future air quality. Geophys. Res. Lett. 40, 2839–2844 (2013). (PMID: <searchLink fieldCode="PM" term="%2210%2E1002%2Fgrl%2E50411%22">10.1002/grl.50411)</searchLink><br />Turner, A. J., Fiore, A. M., Horowitz, L. W. & Bauer, M. Summertime cyclones over the Great Lakes Storm Track from 1860–2100: variability, trends, and association with ozone pollution. Atmos. Chem. Phys. 13, 565–578 (2013). (PMID: <searchLink fieldCode="PM" term="%2210%2E5194%2Facp-13-565-2013%22">10.5194/acp-13-565-2013)</searchLink><br />NCHS. Multiple Cause of Death 1999–2020. National Vital Statistics System (CDC, 2023).<br />Wei, Y. et al. Exposure-response associations between chronic exposure to fine particulate matter and risks of hospital admission for major cardiovascular diseases: population based cohort study. Brit. Med. J. 384, e076939 (2024). (PMID: <searchLink fieldCode="PM" term="%22383830411087998310%2E1136%2Fbmj-2023-076939%22">383830411087998310.1136/bmj-2023-076939)</searchLink><br />Hsiang, S. Climate econometrics. Annu. Rev. Resour. Econ. 8, 43–75 (2016). (PMID: <searchLink fieldCode="PM" term="%2210%2E1146%2Fannurev-resource-100815-095343%22">10.1146/annurev-resource-100815-095343)</searchLink><br />Di, Q. et al. Air pollution and mortality in the Medicare population. N. Engl. J. Med. 376, 2513–2522 (2017). (PMID: <searchLink fieldCode="PM" term="%2228657878576684810%2E1056%2FNEJMoa1702747%22">28657878576684810.1056/NEJMoa1702747)</searchLink><br />Pope, C. A., Coleman, N., Pond, Z. A. & Burnett, R. T. Fine particulate air pollution and human mortality: 25+ years of cohort studies. Environ. Res. 183, 108924 (2020). (PMID: <searchLink fieldCode="PM" term="%223183115510%2E1016%2Fj%2Eenvres%2E2019%2E108924%22">3183115510.1016/j.envres.2019.108924)</searchLink><br />Krewski, D. et al. Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. Res. Rep. Health Eff. Inst. 140, 5–114 (2009).<br />Hoek, G. et al. Long-term air pollution exposure and cardio- respiratory mortality: a review. Environ. Health 12, 43 (2013). (PMID: <searchLink fieldCode="PM" term="%2223714370367982110%2E1186%2F1476-069X-12-43%22">23714370367982110.1186/1476-069X-12-43)</searchLink><br />NCHS. Multiple Cause of Death 1999–2020 on CDC WONDER Online Database, Released 2021: Data Compiled from Data Provided by the 57 Vital Statistics Jurisdictions Through the Vital Statistics Cooperative Program (CDC, 2021); https://wonder.cdc.gov/mcd.html .<br />O’Dell, K. et al. Estimated mortality and morbidity attributable to smoke plumes in the United States: not just a western US problem. Geohealth 5, e2021GH000457 (2021). (PMID: <searchLink fieldCode="PM" term="%2234504989842071010%2E1029%2F2021GH000457%22">34504989842071010.1029/2021GH000457)</searchLink><br />US Census Bureau. National Population Projections Tables: Main Series (2023).<br />Berlin Rubin, N. & Wong-Parodi, G. As California burns: the psychology of wildfire- and wildfire smoke-related migration intentions. Popul. Environ. 44, 15–45 (2022). (PMID: <searchLink fieldCode="PM" term="%2236032962939956410%2E1007%2Fs11111-022-00409-w%22">36032962939956410.1007/s11111-022-00409-w)</searchLink><br />McConnell, K. et al. Rare and highly destructive wildfires drive human migration in the U.S. Nat. Commun. 15, 6631 (2024). (PMID: <searchLink fieldCode="PM" term="%22391033341130045810%2E1038%2Fs41467-024-50630-4%22">391033341130045810.1038/s41467-024-50630-4)</searchLink><br />EPA Report on the Social Cost of Greenhouse Gases: Estimates Incorporating Recent Scientific Advances (EPA, 2023).<br />Qiu, M. et al. Data and code for ‘Wildfire smoke exposure and mortality burden in the USA under climate change’. Zenodo https://doi.org/10.5281/zenodo.16855665 (2025).
– Name: NumberCAS
  Label: Substance Nomenclature
  Group: ID
  Data: 0 (Smoke)<br />0 (Particulate Matter)
– Name: DateEntry
  Label: Entry Date(s)
  Group: Date
  Data: <i>Date Created: </i>20250918 <i>Date Completed: </i>20251127 <i>Latest Revision: </i>20251201
– Name: DateUpdate
  Label: Update Code
  Group: Date
  Data: 20251202
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1038/s41586-025-09611-w
– Name: AN
  Label: PMID
  Group: ID
  Data: 40967551
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=cmedm&AN=40967551
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1038/s41586-025-09611-w
    Languages:
      – Code: eng
        Text: English
    PhysicalDescription:
      Pagination:
        StartPage: 935
    Subjects:
      – SubjectFull: United States epidemiology
        Type: general
      – SubjectFull: Humans
        Type: general
      – SubjectFull: Particulate Matter adverse effects
        Type: general
      – SubjectFull: Particulate Matter analysis
        Type: general
      – SubjectFull: Machine Learning
        Type: general
      – SubjectFull: Air Pollution adverse effects
        Type: general
      – SubjectFull: Air Pollution statistics & numerical data
        Type: general
      – SubjectFull: Wildfires statistics & numerical data
        Type: general
      – SubjectFull: Wildfires mortality
        Type: general
      – SubjectFull: Smoke adverse effects
        Type: general
      – SubjectFull: Smoke analysis
        Type: general
      – SubjectFull: Climate Change statistics & numerical data
        Type: general
      – SubjectFull: Environmental Exposure adverse effects
        Type: general
      – SubjectFull: Environmental Exposure statistics & numerical data
        Type: general
      – SubjectFull: Mortality trends
        Type: general
    Titles:
      – TitleFull: Wildfire smoke exposure and mortality burden in the USA under climate change.
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Qiu M
      – PersonEntity:
          Name:
            NameFull: Li J
      – PersonEntity:
          Name:
            NameFull: Gould CF
      – PersonEntity:
          Name:
            NameFull: Jing R
      – PersonEntity:
          Name:
            NameFull: Kelp M
      – PersonEntity:
          Name:
            NameFull: Childs ML
      – PersonEntity:
          Name:
            NameFull: Wen J
      – PersonEntity:
          Name:
            NameFull: Xie Y
      – PersonEntity:
          Name:
            NameFull: Lin M
      – PersonEntity:
          Name:
            NameFull: Kiang MV
      – PersonEntity:
          Name:
            NameFull: Heft-Neal S
      – PersonEntity:
          Name:
            NameFull: Diffenbaugh NS
      – PersonEntity:
          Name:
            NameFull: Burke M
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 11
              Text: 2025 Nov
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-electronic
              Value: 1476-4687
          Numbering:
            – Type: volume
              Value: 647
            – Type: issue
              Value: 8091
          Titles:
            – TitleFull: Nature
              Type: main
ResultId 1