Met246 and Asn250 in the D2 protein are essential for the operation of the quinone-Fe-acceptor complex of Photosystem II.
Gespeichert in:
| Titel: | Met246 and Asn250 in the D2 protein are essential for the operation of the quinone-Fe-acceptor complex of Photosystem II. |
|---|---|
| Autoren: | Zhong V; Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand., Vass I; HUN-REN, Biological Research Center, Institute of Plant Biology, P.O. Box 521, Temesvári krt. 62, Szeged H-6726, Hungary., Patil PP; HUN-REN, Biological Research Center, Institute of Plant Biology, P.O. Box 521, Temesvári krt. 62, Szeged H-6726, Hungary.; Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, P.O. Box 652, Dóm tér 10, Szeged H-6720, Hungary., Eaton-Rye JJ; Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand. |
| Quelle: | Plant & cell physiology [Plant Cell Physiol] 2025 Nov 28; Vol. 66 (11), pp. 1730-1749. |
| Publikationsart: | Journal Article |
| Sprache: | English |
| Info zur Zeitschrift: | Publisher: Oxford University Press Country of Publication: Japan NLM ID: 9430925 Publication Model: Print Cited Medium: Internet ISSN: 1471-9053 (Electronic) Linking ISSN: 00320781 NLM ISO Abbreviation: Plant Cell Physiol Subsets: MEDLINE |
| Imprint Name(s): | Publication: Tokyo : Oxford University Press Original Publication: Kyoto, Japan : Japanese Society of Plant Physiologists, |
| MeSH-Schlagworte: | Photosystem II Protein Complex*/metabolism , Photosystem II Protein Complex*/genetics , Synechocystis*/metabolism , Synechocystis*/genetics , Bacterial Proteins*/metabolism , Bacterial Proteins*/genetics , Quinones*/metabolism, Electron Transport ; Plastoquinone/metabolism ; Mutation ; Binding Sites ; Thylakoids/metabolism |
| Abstract: | The chemical properties of the primary (QA) and secondary (QB) plastoquinone electron acceptors of Photosystem II (PS II) depend on their protein environments. The DE loop of the D2 protein (residues 222-262) contributes to the QA-binding site while the DE loop of the D1 protein (residues 233-266) contributes to the QB-binding environment. The roles of the invariant D2-Met246 and D2-Asn250 residues in the vicinity of the QA-binding site have been investigated in the cyanobacterium Synechocystis sp. PCC 6803 using mutants targeting both residues. The M246F strain was phenotypically similar to control cells; however, the M246A, N250A, and N250H strains had slowed photoautotrophic growth and were sensitive to high light and the addition of formate. In addition, the M246K and N250N strains were unable to assemble PS II. Chlorophyll a fluorescence measurements indicated electron transfer between QA and QB was modified in the M246A, N250A, and N250H strains, and the exchange of plastoquinol between the QB-binding site and the plastoquinone pool in the thylakoid membrane was impaired. Modified electron transfer in these mutants in the presence or absence of formate was restored by the addition of bicarbonate. In addition, thermoluminescence measurements showed a down shift in the redox midpoint potential of the QA/QA- couple in the N250A and N250H strains. These results demonstrate that Met246 and Asn250 play indispensable roles in the quinone-iron-acceptor complex, influencing both QA binding and the binding of the bicarbonate ligand to the non-heme iron that is located between QA and QB. (© The Author(s) 2025. Published by Oxford University Press on behalf of the Japanese Society of Plant Physiologists.) |
| References: | Plant Cell. 2024 Oct 3;36(10):3997-4013. (PMID: 38484127) Biochim Biophys Acta. 2012 Jan;1817(1):44-65. (PMID: 21679684) Photosynth Res. 2003;76(1-3):343-70. (PMID: 16228592) FEBS Lett. 2014 Oct 16;588(20):3751-60. (PMID: 25171861) Biochemistry. 2022 Sep 6;61(17):1836-1843. (PMID: 35914244) Biochim Biophys Acta. 1992 Apr 10;1100(1):1-8. (PMID: 1314662) Annu Rev Phys Chem. 2017 May 5;68:101-116. (PMID: 28226223) Biochim Biophys Acta Bioenerg. 2020 Oct 1;1861(10):148234. (PMID: 32485158) Biochim Biophys Acta. 1976 Dec 6;449(3):602-5. (PMID: 999858) Biochim Biophys Acta. 2012 Aug;1817(8):1237-47. (PMID: 22402228) Biochemistry. 2023 Sep 19;62(18):2738-2750. (PMID: 37606628) Biochim Biophys Acta Bioenerg. 2024 Nov 1;1865(4):149150. (PMID: 38906313) Nature. 2011 May 5;473(7345):55-60. (PMID: 21499260) Biochim Biophys Acta. 2012 Jan;1817(1):76-87. (PMID: 21557928) Biochemistry. 1999 Sep 28;38(39):12786-94. (PMID: 10504248) Photochem Photobiol. 1970 Jun;11(6):457-75. (PMID: 5456273) Science. 2004 Mar 19;303(5665):1831-8. (PMID: 14764885) Biochim Biophys Acta. 2011 Feb;1807(2):216-26. (PMID: 21036139) J Phys Chem B. 2021 Dec 16;125(49):13460-13466. (PMID: 34875835) Proc Natl Acad Sci U S A. 2022 Feb 8;119(6):. (PMID: 35115403) FEBS Lett. 1993 Dec 27;336(2):352-6. (PMID: 8262261) Photosynth Res. 2022 Jan;151(1):103-111. (PMID: 34273062) Mol Biol Evol. 2015 May;32(5):1310-28. (PMID: 25657330) Physiol Plant. 2011 May;142(1):35-46. (PMID: 21320129) Biochemistry. 1992 Nov 17;31(45):11065-71. (PMID: 1445845) Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1408-12. (PMID: 11607279) Nature. 2018 Nov;563(7731):421-425. (PMID: 30405241) Front Plant Sci. 2016 Dec 26;7:1950. (PMID: 28082998) Annu Rev Plant Biol. 2015;66:23-48. (PMID: 25746448) J Am Chem Soc. 2022 Dec 7;144(48):22035-22050. (PMID: 36413491) Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12144-12149. (PMID: 27791001) Trends Biochem Sci. 2001 Nov;26(11):648-53. (PMID: 11701322) Biochim Biophys Acta. 2012 Jan;1817(1):209-17. (PMID: 21565163) J Biol Chem. 2011 Apr 29;286(17):14812-9. (PMID: 21339295) Photosynth Res. 1988 Jul;17(1-2):97-113. (PMID: 24429663) Front Plant Sci. 2022 Sep 07;13:934736. (PMID: 36161009) Microorganisms. 2022 Apr 19;10(5):. (PMID: 35630282) Biochim Biophys Acta. 2007 Mar;1767(3):233-43. (PMID: 17349965) Methods Mol Biol. 2011;684:295-312. (PMID: 20960137) Nat Commun. 2017 May 10;8:15214. (PMID: 28489071) Proc Natl Acad Sci U S A. 2022 Jan 4;119(1):. (PMID: 34937700) J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):236-57. (PMID: 21295993) Science. 2024 Jun 21;384(6702):1349-1355. (PMID: 38900892) Biochemistry. 2021 Jan 12;60(1):53-63. (PMID: 33332101) FEBS Lett. 2020 Sep;594(18):2953-2964. (PMID: 32620043) Nature. 2023 May;617(7961):629-636. (PMID: 37138085) Biochemistry. 2021 Dec 7;60(48):3697-3706. (PMID: 34784184) Biochem Biophys Res Commun. 2024 Nov 12;733:150692. (PMID: 39278092) Biochim Biophys Acta Bioenerg. 2019 Oct 1;1860(10):148054. (PMID: 31336104) Nat Plants. 2021 Aug;7(8):1132-1142. (PMID: 34226692) J Biol Chem. 1995 Jun 23;270(25):14919-27. (PMID: 7797471) Biochemistry. 2022 Jul 5;61(13):1298-1312. (PMID: 35699437) Biochim Biophys Acta. 2012 Aug;1817(8):1134-51. (PMID: 22521596) Biochim Biophys Acta. 2012 Jan;1817(1):26-43. (PMID: 21835158) Nat Plants. 2021 Apr;7(4):524-538. (PMID: 33846594) Annu Rev Plant Biol. 2013;64:609-35. (PMID: 23451783) Photochem Photobiol Sci. 2020 May 1;19(5):585-603. (PMID: 32163064) Nature. 2024 Feb;626(7999):670-677. (PMID: 38297122) J Bacteriol. 1989 Sep;171(9):4707-13. (PMID: 2504695) |
| Contributed Indexing: | Keywords: Synechocystis sp. PCC 6803; D2; Photosystem II; QA; QB; bicarbonate |
| Substance Nomenclature: | 0 (Photosystem II Protein Complex) OAC30J69CN (Plastoquinone) 0 (Bacterial Proteins) 0 (Quinones) |
| Entry Date(s): | Date Created: 20250714 Date Completed: 20251128 Latest Revision: 20251130 |
| Update Code: | 20251130 |
| PubMed Central ID: | PMC12661319 |
| DOI: | 10.1093/pcp/pcaf078 |
| PMID: | 40657803 |
| Datenbank: | MEDLINE |
| Abstract: | The chemical properties of the primary (QA) and secondary (QB) plastoquinone electron acceptors of Photosystem II (PS II) depend on their protein environments. The DE loop of the D2 protein (residues 222-262) contributes to the QA-binding site while the DE loop of the D1 protein (residues 233-266) contributes to the QB-binding environment. The roles of the invariant D2-Met246 and D2-Asn250 residues in the vicinity of the QA-binding site have been investigated in the cyanobacterium Synechocystis sp. PCC 6803 using mutants targeting both residues. The M246F strain was phenotypically similar to control cells; however, the M246A, N250A, and N250H strains had slowed photoautotrophic growth and were sensitive to high light and the addition of formate. In addition, the M246K and N250N strains were unable to assemble PS II. Chlorophyll a fluorescence measurements indicated electron transfer between QA and QB was modified in the M246A, N250A, and N250H strains, and the exchange of plastoquinol between the QB-binding site and the plastoquinone pool in the thylakoid membrane was impaired. Modified electron transfer in these mutants in the presence or absence of formate was restored by the addition of bicarbonate. In addition, thermoluminescence measurements showed a down shift in the redox midpoint potential of the QA/QA- couple in the N250A and N250H strains. These results demonstrate that Met246 and Asn250 play indispensable roles in the quinone-iron-acceptor complex, influencing both QA binding and the binding of the bicarbonate ligand to the non-heme iron that is located between QA and QB.<br /> (© The Author(s) 2025. Published by Oxford University Press on behalf of the Japanese Society of Plant Physiologists.) |
|---|---|
| ISSN: | 1471-9053 |
| DOI: | 10.1093/pcp/pcaf078 |
Nájsť tento článok vo Web of Science