Dynamic gene regulatory network inference from single-cell data using optimal transport.

Gespeichert in:
Bibliographische Detailangaben
Titel: Dynamic gene regulatory network inference from single-cell data using optimal transport.
Autoren: Lamoline F; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, L-4367, Luxembourg., Haasler I; Department of Information Technology, Uppsala University, Uppsala, 751 05, Sweden.; Department of Mathematics, KTH Royal Institute of Technology, Stockholm, 100 44, Sweden., Karlsson J; Department of Mathematics, KTH Royal Institute of Technology, Stockholm, 100 44, Sweden., Gonçalves J; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, L-4367, Luxembourg.; Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom., Aalto A; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, L-4367, Luxembourg.; Department of Cancer Research, Luxembourg Institute of Health, Strassen, L-1445, Luxembourg.
Quelle: Bioinformatics (Oxford, England) [Bioinformatics] 2025 Aug 02; Vol. 41 (8).
Publikationsart: Journal Article
Sprache: English
Info zur Zeitschrift: Publisher: Oxford University Press Country of Publication: England NLM ID: 9808944 Publication Model: Print Cited Medium: Internet ISSN: 1367-4811 (Electronic) Linking ISSN: 13674803 NLM ISO Abbreviation: Bioinformatics Subsets: MEDLINE
Imprint Name(s): Original Publication: Oxford : Oxford University Press, c1998-
MeSH-Schlagworte: Gene Regulatory Networks* , Single-Cell Analysis*/methods , Computational Biology*/methods, Parkinson Disease/genetics ; Humans ; Algorithms ; Software ; Systems Biology/methods
Abstract: Motivation: Modelling gene expression is a central problem in systems biology. Single-cell technologies have revolutionized the field by enabling sequencing at the resolution of individual cells. This results in a much richer data compared to what is obtained by bulk technologies, offering new possibilities and challenges for gene regulatory network inference.
Results: In this work, we introduce GRIT (gene regulation inference by transport)-a method to fit a differential equation model and to infer gene regulatory networks from single-cell data using the theory of optimal transport. The idea consists in tracking the evolution of the cell distribution over time and finding the system whose temporal marginals minimize the transport cost with the observations. GRIT is finally used to identify genes and pathways affected by two Parkinson's disease associated mutations.
Availability and Implementation: Matlab implementation of the method and code for data generation are at gitlab.com/uniluxembourg/lcsb/systems-control/grit together with a user guide. A snapshot of the code used for the results of this article is at doi: 10.5281/zenodo.15582432.
(© The Author(s) 2025. Published by Oxford University Press.)
References: J Parkinsons Dis. 2022;12(s1):S129-S136. (PMID: 35754290)
Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6286-91. (PMID: 20308593)
Bioinformatics. 2022 Apr 12;38(8):2169-2177. (PMID: 35157031)
Aging (Albany NY). 2021 Jan 20;13(3):4115-4137. (PMID: 33494069)
PLoS Comput Biol. 2023 Mar 27;19(3):e1010962. (PMID: 36972296)
Nat Genet. 2000 May;25(1):25-9. (PMID: 10802651)
Mol Neurodegener. 2024 Jan 20;19(1):7. (PMID: 38245794)
Microbes Infect. 2023 Nov-Dec;25(8):105211. (PMID: 37574181)
BMC Genomics. 2018 Jun 19;19(1):477. (PMID: 29914354)
Front Cell Neurosci. 2017 May 11;11:125. (PMID: 28553204)
Front Cell Dev Biol. 2021 Jul 20;9:621187. (PMID: 34354990)
Nat Commun. 2023 Nov 24;14(1):7711. (PMID: 38001063)
Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16970-5. (PMID: 20837543)
Nat Methods. 2023 Nov;20(11):1759-1768. (PMID: 37770709)
Bioinformatics. 2020 Sep 15;36(18):4774-4780. (PMID: 33026066)
Nat Methods. 2023 Feb;20(2):218-228. (PMID: 36690742)
Nature. 2018 Aug;560(7719):494-498. (PMID: 30089906)
Bioinformatics. 2017 Aug 01;33(15):2314-2321. (PMID: 28379368)
Cell Syst. 2017 Sep 27;5(3):251-267.e3. (PMID: 28957658)
Curr Opin Syst Biol. 2021 Jun;26:12-23. (PMID: 33969247)
Nat Commun. 2023 May 31;14(1):3148. (PMID: 37253722)
PLoS Comput Biol. 2021 Dec 3;17(12):e1009466. (PMID: 34860824)
Cell. 2019 Feb 7;176(4):928-943.e22. (PMID: 30712874)
Nat Methods. 2014 Jul;11(7):740-2. (PMID: 24836921)
Cell. 2017 Jun 15;169(7):1177-1186. (PMID: 28622505)
Nat Cell Biol. 2013 Apr;15(4):363-72. (PMID: 23524953)
PLoS One. 2010 Sep 28;5(9):. (PMID: 20927193)
Commun Biol. 2022 Jan 13;5(1):49. (PMID: 35027645)
Cell Rep. 2021 Oct 19;37(3):109864. (PMID: 34686322)
IEEE Signal Process Mag. 2017 Jul;34(4):43-59. (PMID: 29962824)
Hum Genet. 2008 Aug;124(1):95-9. (PMID: 18587682)
BMC Bioinformatics. 2024 Dec 23;25(1):388. (PMID: 39710672)
Am J Hum Genet. 2022 Feb 3;109(2):311-327. (PMID: 35077669)
Brief Bioinform. 2023 Sep 20;24(5):. (PMID: 37544659)
J Parkinsons Dis. 2021;11(1):123-138. (PMID: 33325399)
Front Neurol. 2019 Jan 24;10:13. (PMID: 30733703)
Nat Commun. 2024 Jun 8;15(1):4911. (PMID: 38851792)
Nat Methods. 2023 May;20(5):665-672. (PMID: 37037999)
Bioinformatics. 2015 Jun 15;31(12):i89-96. (PMID: 26072513)
Genetics. 2023 May 4;224(1):. (PMID: 36866529)
Cell. 2022 Feb 17;185(4):690-711.e45. (PMID: 35108499)
Biomed Res Int. 2022 Mar 15;2022:5009892. (PMID: 35342758)
J Neurosci. 2019 Sep 4;39(36):7074-7085. (PMID: 31300519)
Stem Cell Reports. 2019 May 14;12(5):878-889. (PMID: 30982740)
Nat Commun. 2020 Apr 29;11(1):2084. (PMID: 32350282)
Nat Commun. 2020 Jul 13;11(1):3493. (PMID: 32661225)
Nat Methods. 2020 Feb;17(2):147-154. (PMID: 31907445)
Cell Rep. 2023 Mar 28;42(3):112221. (PMID: 36905628)
Bioinformatics. 2019 Jun 1;35(12):2159-2161. (PMID: 30445495)
Grant Information: CORE19/13684479/DynCell Luxembourg National Research Fund
Entry Date(s): Date Created: 20250712 Date Completed: 20250825 Latest Revision: 20250825
Update Code: 20250827
PubMed Central ID: PMC12352743
DOI: 10.1093/bioinformatics/btaf394
PMID: 40650986
Datenbank: MEDLINE
Beschreibung
Abstract:Motivation: Modelling gene expression is a central problem in systems biology. Single-cell technologies have revolutionized the field by enabling sequencing at the resolution of individual cells. This results in a much richer data compared to what is obtained by bulk technologies, offering new possibilities and challenges for gene regulatory network inference.<br />Results: In this work, we introduce GRIT (gene regulation inference by transport)-a method to fit a differential equation model and to infer gene regulatory networks from single-cell data using the theory of optimal transport. The idea consists in tracking the evolution of the cell distribution over time and finding the system whose temporal marginals minimize the transport cost with the observations. GRIT is finally used to identify genes and pathways affected by two Parkinson's disease associated mutations.<br />Availability and Implementation: Matlab implementation of the method and code for data generation are at gitlab.com/uniluxembourg/lcsb/systems-control/grit together with a user guide. A snapshot of the code used for the results of this article is at doi: 10.5281/zenodo.15582432.<br /> (© The Author(s) 2025. Published by Oxford University Press.)
ISSN:1367-4811
DOI:10.1093/bioinformatics/btaf394