Decision trees for combining morphological traits and measurements of the skull for osteological sex estimation.

Uloženo v:
Podrobná bibliografie
Název: Decision trees for combining morphological traits and measurements of the skull for osteological sex estimation.
Autoři: Ferrell MJ; Department of Anthropology, University of Kentucky, Lexington, Kentucky, USA., Schultz JJ; Department of Anthropology, University of Kentucky, Lexington, Kentucky, USA., Adams DM; Department of Anthropology, University of Central Florida, Orlando, Florida, USA.; National Center for Forensic Science, Orlando, Florida, USA.
Zdroj: Journal of forensic sciences [J Forensic Sci] 2025 Sep; Vol. 70 (5), pp. 1653-1669. Date of Electronic Publication: 2025 Jul 04.
Způsob vydávání: Journal Article
Jazyk: English
Informace o časopise: Publisher: Blackwell Pub Country of Publication: United States NLM ID: 0375370 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1556-4029 (Electronic) Linking ISSN: 00221198 NLM ISO Abbreviation: J Forensic Sci Subsets: MEDLINE
Imprint Name(s): Publication: 2006- : Malden, MA : Blackwell Pub.
Original Publication: [Chicago, Ill.] : Callaghan and Co., 1956-
Výrazy ze slovníku MeSH: Decision Trees* , Sex Determination by Skeleton*/methods , Skull*/anatomy & histology, Adult ; Female ; Humans ; Male ; Middle Aged ; Young Adult ; Black or African American ; Cephalometry ; Forensic Anthropology/methods ; White
Abstrakt: Forensic anthropologists commonly estimate osteological sex using separate metric and morphological analyses, without integrating both data types into a single statistical model. Combining data types into one classification model has the potential to increase sex classification accuracies for the skull. Therefore, the present study seeks to improve sex classification accuracies for the skull by combining morphological and metric variables using decision trees. The main objectives are to (1) generate multiple decision trees that combine metric and morphological variables, (2) compare the classification accuracies of the generated trees to current standard osteological sex estimation methods, and (3) compare the results of the combined data trees to separate morphological and metric trees. The sample included 212 European Americans (males = 106, females = 106) and 191 African Americans (males = 114, females = 77). Decision trees were trained on 80% of the sample and tested using a 20% holdout sample. Multiple trees were generated using 12 morphological and 14 metric variables. The skull (87.9%-100%) and cranium (90.9%-100%) models achieved higher accuracies compared to the mandible models (72.7%-92%). Additionally, the pooled, population-inclusive models performed as well as or better than the separate population models. Overall, the combined-data models attained higher classification accuracies than previous studies that integrated skull measurements and morphological traits, as well as compared to separate decision trees for both data types. Future research should continue to explore implementing decision trees for osteological sex estimation, including models combining metric and morphological variables from multiple skeletal regions.
(© 2025 American Academy of Forensic Sciences.)
References: Klales AR. Practitioner preferences for sex estimation from human skeletal remains. In: Klales AR, editor. Sex estimation of the human skeleton: history, methods, and emerging techniques. Cambridge, MA: Academic Press; 2020. p. 11–23.
Klales AR. Current state of sex estimation in forensic anthropology. Forensic Anthropol. 2021;4(2):118–127. https://doi.org/10.5744/fa.2020.3033.
Garvin HM. Adult sex determination: methods and application. In: Dirkmaat DC, editor. A companion to forensic anthropology. Hoboken, NJ: Wiley; 2012. p. 239–247.
AAFS Academy Standards Board. ASB Standard 090—standard for sex estimation in forensic anthropology. 2019. Available from: www.aafs.org/academy‐standards‐board. Accessed 20 Jun 2025.
Klales AR, Ousley SD, Passalacqua NV. Statistical approaches to sex estimation. In: Klales AR, editor. Sex estimation of the human skeleton: history, methods, and emerging techniques. Cambridge, MA: Academic Press; 2020. p. 203–217.
Walker PL. Sexing skulls using discriminant function analysis of visually assessed traits. Am J Phys Anthropol. 2008;136(1):39–50. https://doi.org/10.1002/ajpa.20776.
Langley NR, Dudzik B, Cloutier A. A decision tree for nonmetric sex assessment from the skull. J Forensic Sci. 2018;63(1):31–37. https://doi.org/10.1111/1556‐4029.13534.
Klales AR. MorphoPASSE: The Morphological Pelvis and Skull Sex Estimation database. Version 1.0. Topeka, KS: Washburn University; 2018.
Ousley SD, Jantz RL. FORDISC 3.1: personal computer forensic discriminant functions [computer program]. Knoxville, TN: University of Tennessee; 2012.
Scott S, Jantz RL. Survivability versus rate of recovery for skeletal elements in forensic anthropology. J Forensic Sci. 2022;67(5):1758–1765. https://doi.org/10.1111/1556‐4029.15087.
Berg GE. Biological affinity and sex determination using morphometric and morphoscopic variables from the human mandible [dissertation]. Knoxville, TN: The University of Tennessee, Knoxville; 2008.
Berg GE, Kenyhercz MW. Introducing human mandible identification [(hu)MANid]: a free, web‐based GUI to classify human mandibles. J Forensic Sci. 2017;62(6):1592–1598. https://doi.org/10.1111/1556‐4029.13479.
Kelley SR. Incorporating metrics and nonmetrics in the development of a population‐inclusive sex estimation model using volume rendered CT images of the skull. Boston, MA: Boston University; 2022.
Berg GE. Biological affinity and sex from the mandible utilizing multiple world populations. In: Berg GE, Ta'ala SC, editors. Biological affinity in forensic identification of human skeletal remains. Boca Raton, FL: CRC Press; 2015. p. 43–82.
Kelley SR, Tallman SD. Population‐inclusive assigned‐sex‐at‐birth estimation from skull computed tomography scans. Forensic Sci. 2022;2(2):321–348. https://doi.org/10.3390/forensicsci2020024.
Nikita E, García‐Donas JG, Nikitas P, Obertová Z, Kranioti EF. Sex estimation using nonmetric variables: application of R functions. In: Obertová Z, Steweart A, Cataneo C, editors. Statistics and probability in forensic anthropology. London, U.K.: Elsevier; 2020. p. 139–153.
Ferrell MJ, Schultz JJ, Adams DM. Sex estimation research trends in forensic anthropology between 2000 and 2022 in five prominent journals. J Forensic Sci. 2024;69(4):1138–1154. https://doi.org/10.1111/1556‐4029.15522.
Nikita E, Nikitas P. On the use of machine learning algorithms in forensic anthropology. Legal Med. 2020;47:101771. https://doi.org/10.1016/j.legalmed.2020.101771.
Zhou ZH. Machine learning. Singapore: Springer Singapore; 2021. p. 79–102.
Nikita E, Nikitas P. Data mining and decision trees. In: Obertova Z, Stewart A, Cattaneo C, editors. Statistics and probability in forensic anthropology. Cambridge, MA: Academic Press; 2020. p. 87–105.
Rokach L, Maimon O. Data mining with decision trees: theory and applications. Singapore/ Hackensack, NJ: World Scientific; 2008. p. 1–16.
Stevenson JC, Mahoney ER, Walker PL, Everson PM. Technical note: prediction of sex based on five skull traits using decision analysis (CHAID). Am J Phys Anthropol. 2009;139(3):434–441. https://doi.org/10.1002/ajpa.21042.
Toneva D, Nikolova S, Agre G, Zlatareva D, Hadjidekov V, Lazarov N. Machine learning approaches for sex estimation using cranial measurements. Int J Leg Med. 2021;135(3):951–966. https://doi.org/10.1007/s00414‐020‐02460‐4.
Toy S, Secgin Y, Oner Z, Turan MK, Oner S, Senol D. A study on sex estimation by using machine learning algorithms with parameters obtained from computerized tomography images of the cranium. Sci Rep. 2022;12:4278. https://doi.org/10.1038/s41598‐022‐07415‐w.
Ferrell MJ, Schultz JJ, Adams DM. Decision trees for estimating osteological sex from the skull using an expanded suite of morphological traits. J Forensic Sci. 2025;70(3):835–853. https://doi.org/10.1111/1556‐4029.70017.
Ferrell MJ, Schultz JJ, Adams DM. The application of decision trees for estimating osteological sex from common measurements of the skull. J Forensic Sci. 2025;70(3):854–867. https://doi.org/10.1111/1556‐4029.70031.
Gocha TP, Mavroudas SR, Wescott DJ. The Texas state donated skeletal collection at the forensic anthropology Center at Texas State. Forensic Sci. 2022;2(1):7–19. https://doi.org/10.3390/forensicsci2010002.
STAFS Skeletal Collection. 2024. Available from: https://ifrti.org/STAFS/research.html. Accessed 20 Jun 2025.
UTK Donated Skeletal Collection. 2024. Available from: https://fac.utk.edu/utk‐donated‐skeletal‐collection/. Accessed 20 Jun 2025.
Alioto AP. A new division of labor? Understanding structural violence through occupational stress: an examination of entheseal patterns and osteoarthritis in the Hamann–Todd collection. In: Tremblay LA, Reedy S, editors. The bioarchaeology of structural violence. Cham, Switzerland: Springer International Publishing; 2020. p. 169–201.
AAFS Academy Standards Board. ASB Standard 132—standard for population affinity estimation in forensic anthropology. 2023. Available from: www.aafs.org/academy‐standards‐board. Accessed 20 Jun 2025.
Maier C, Craig A, Adams DM. Language use in ancestry research and estimation. J Forensic Sci. 2021;66(1):11–24. https://doi.org/10.1111/1556‐4029.14601.
Buikstra JE, Ubelaker DH. Standards for data collection from human skeletal remains. Fayetteville, AR: Arkansas Archaeological Survey; 1994.
Ferembach D, Schwindezky I, Stoukal M. Recommendations for age and sex diagnoses of skeletons. J Hum Evol. 1980;9:517–549. https://doi.org/10.1016/j.jchb.2005.07.002.
Harrison D. Investigations in sex estimation. Amsterdam, NL: Elsevier; 2019. p. 71–89.
Spradley MK, Jantz RL. Sex estimation in forensic anthropology: skull versus postcranial elements. J Forensic Sci. 2011;56(2):289–296. https://doi.org/10.1111/j.1556‐4029.2010.01635.x.
Langley NR, Jantz LM, Ousley SD, Jantz RL, Milner G. Data collection procedures for forensic skeletal material 2.0. Knoxville, TN: The University of Tennessee; 2016. p. 65–72.
Lewis CJ, Garvin HM. Reliability of the Walker cranial nonmetric method and implications for sex estimation. J Forensic Sci. 2016;61(3):743–751. https://doi.org/10.1111/1556‐4029.13013.
Langley NR, Meadows Jantz L, McNulty S, Maijanen H, Ousley SD, Jantz RL. Error quantification of osteometric data in forensic anthropology. Forensic Sci Int. 2018;287:183–189. https://doi.org/10.1016/j.forsciint.2018.04.004.
Walrath DE, Turner P, Bruzek J. Reliability test of the visual assessment of cranial traits for sex determination. Am J Phys Anthropol. 2004;125(2):132–137. https://doi.org/10.1002/ajpa.10373.
Jerković I, Bašić Ž, Bareša T, Krešić E, Hadžić AA, Dolić K, et al. The repeatability of standard cranial measurements on dry bones and MSCT images. J Forensic Sci. 2022;67(5):1938–1947. https://doi.org/10.1111/1556‐4029.15100.
Byrnes JF, Kenyhercz MW, Berg GE. Technical note: examining interobserver reliability of metric and morphoscopic characteristics of the mandible. J Forensic Sci. 2017;62(4):981–985. https://doi.org/10.1111/1556‐4029.13349.
Hothorn T, Hornik K, Strobl C, Zeileis A. Package “party”. 2023. Available from: https://cran.r‐project.org/web/packages/party/party.pdf. Accessed 20 Jun 2025.
Avent PR, Hughes CE, Garvin HM. Applying posterior probability informed thresholds to traditional cranial trait sex estimation methods. J Forensic Sci. 2022;67(2):440–449. https://doi.org/10.1111/1556‐4029.14947.
Adams DM, Pilloud M. The (mis)appropriation of biological anthropology in race science and the implications for forensic anthropology. Forensic Anthropol. 2021;4(4):235–256. https://doi.org/10.5744/fa.2021.0010.
Pilloud MA, Kenessey DE, Smith EM, Vlemincq‐Mendieta T. Estimation of sex assigned at birth using dental crown and cervical measurements in a modern global sample. J Forensic Sci. 2024;69(6):1996–2008. https://doi.org/10.1111/1556‐4029.15593.
Jantz RL, Ousley SD. Sexual dimorphism variation in Fordisc samples. In: Klales AR, editor. Sex estimation of the human skeleton. Cambridge, MA: Elsevier; 2020. p. 185–200.
Kenyhercz MW, Berg GE. Evaluating mixture discriminant analysis to classify human mandibles with (hu)MANid, a free, R‐based GUI. In: Latham KE, Bartelink EJ, Finnegan M, editors. New perspectives in forensic human skeletal identification. Amsterdam, Netherlands: Elsevier; 2018. p. 35–43.
Tabachnick BG, Fidell LS. Using multivariate statistics. 6th ed. Boston, MA: Pearson; 2013. p. 383–385.
Berg GE, Kenyhercz MW. (hu)MANid. 2017. Available from: https://anthropologyapps.shinyapps.io/humanid/. Accessed 20 Jun 2025.
Klales A, Garvin H, Gocha T, Lesciotto K, Walls M. Examining the reliability of morphological traits for sex estimation: implications for the Walker (2008) and Klales et al. (2012) methods. Forensic Anthropol. 2021;3(3):139–150. https://doi.org/10.5744/fa.2020.4015.
Long H, Klales A. Application of the optimized summed score attributes method for sex estimation. Forensic Anthropol. 2020;3(4):224–233. https://doi.org/10.5744/fa.2020.0049.
Hothorn T, Hornik K, Zeileis A. Unbiased recursive partitioning: a conditional inference framework. J Comput Graph Stat. 2006;15(3):651–674. https://doi.org/10.1198/106186006X133933.
Palmiotto F. The black box on trial: the impact of algorithmic opacity on fair trial rights in criminal proceedings. In: Ebers M, Cantero Gamito M, editors. Algorithmic governance and governance of algorithms. Cham, Switzerland: Springer International Publishing; 2021. p. 49–70.
Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell. 2019;1(5):206–215. https://doi.org/10.1038/s42256‐019‐0048‐x.
Freitas AA. Comprehensible classification models: a position paper. ACM SIGKDD Explor Newsl. 2014;15(1):1–10. https://doi.org/10.1145/2594473.2594475.
Delibasic B, Vukicevic M, Jovanovic M, Suknovic M. White‐box or black‐box decision tree algorithms: which to use in education? IEEE Trans Educ. 2013;56(3):287–291. https://doi.org/10.1109/TE.2012.2217342.
Loyola‐Gonzalez O. Black‐box vs. white‐box: understanding their advantages and weaknesses from a practical point of view. IEEE Access. 2019;7:154096–154113. https://doi.org/10.1109/ACCESS.2019.2949286.
Christensen AM, Passalacqua NV, Bartelink EJ. Forensic anthropology: current methods and practice. Cambridge, MA: Academic Press; 2014. p. 243–270.
Dirkmaat DC, Cabo LL, Ousley SD, Symes SA. New perspectives in forensic anthropology. Yearb Phys Anthropol. 2008;137:33–52. https://doi.org/10.1002/ajpa.20948.
Lesciotto KM. The impact of Daubert on the admissibility of forensic anthropology expert testimony. J Forensic Sci. 2015;60(3):549–555. https://doi.org/10.1111/1556‐4029.12740.
Daubert vs. Merrell Dow Pharmaceuticals, Inc. 509 U.S. 579. 1993.
Bethard JD, DiGangi EA. From the laboratory to the witness stand: research trends and method validation in forensic anthropology. In: Fulginiti LC, Hartnett‐McCann K, Galloway A, editors. Forensic anthropology and the United States judicial system. Hoboken, NJ: John Wiley & Sons; 2019. p. 41–52.
Christensen AM, Crowder CM. Evidentiary standards for forensic anthropology. J Forensic Sci. 2009;54(6):1211–1216. https://doi.org/10.1111/j.1556‐4029.2009.01176.x.
Lesciotto KM, Christensen AM. The over‐citation of Daubert in forensic anthropology. J Forensic Sci. 2024;69(1):9–17. https://doi.org/10.1111/1556‐4029.15409.
Grant Information: Anthropology Department, University of Central Florida; College of Sciences, University of Central Florida
Contributed Indexing: Keywords: biological profile; decision trees; forensic anthropology; machine learning; sex estimation; skull
Entry Date(s): Date Created: 20250704 Date Completed: 20250911 Latest Revision: 20250912
Update Code: 20250912
DOI: 10.1111/1556-4029.70123
PMID: 40616150
Databáze: MEDLINE
Buďte první, kdo okomentuje tento záznam!
Nejprve se musíte přihlásit.