Protein Microarray Analysis with GenePix.

Saved in:
Bibliographic Details
Title: Protein Microarray Analysis with GenePix.
Authors: Barderas R; Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain. r.barderasm@isciii.es.; CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain. r.barderasm@isciii.es., Montero-Calle A; Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain., San Segundo-Acosta P; Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain.
Source: Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2025; Vol. 2929, pp. 85-95.
Publication Type: Journal Article
Language: English
Journal Info: Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
Imprint Name(s): Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
MeSH Terms: Protein Array Analysis*/methods , Protein Array Analysis*/instrumentation , Proteomics*/methods , Software*, Humans
Abstract: Protein microarrays are powerful proteomics tools for high-throughput analysis. They allow to screen simultaneously large numbers of proteins for their binding specificity, enzymatic activity, and abundance in biological samples, among other uses. One widely used platform for protein microarray analysis is GenePix, which offers instrumentation and software solutions for data acquisition and analysis. Here, we provide an overview of the use of GenePix for protein microarray analysis, exploring its applications and advantages.
(© 2025. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Barderas R, Srivastava S, LaBaer J (2021) Protein microarray-based proteomics for disease analysis. Methods Mol Biol 2344:3–6. (PMID: 10.1007/978-1-0716-1562-1_134115348)
LaBaer J, Ramachandran N (2005) Protein microarrays as tools for functional proteomics. Curr Opin Chem Biol 9(1):14–19. (PMID: 10.1016/j.cbpa.2004.12.00615701447)
Montero-Calle A, Barderas R (2021) Analysis of protein-protein interactions by protein microarrays. Methods Mol Biol 2344:81–97. (PMID: 10.1007/978-1-0716-1562-1_634115353)
Ayoglu B, Schwenk JM, Nilsson P (2016) Antigen arrays for profiling autoantibody repertoires. Bioanalysis 8(10):1105–1126. (PMID: 10.4155/bio.16.3127097564)
Babel I, Barderas R, Diaz-Uriarte R, Moreno V, Suarez A, Fernandez-Acenero MJ, Salazar R, Capella G, Casal JI (2011) Identification of MST1/STK4 and SULF1 proteins as autoantibody targets for the diagnosis of colorectal cancer by using phage microarrays. Mol Cell Proteomics 10(3):M110.001784. (PMID: 10.1074/mcp.M110.001784212281153047148)
Banerjee A, Ray A, Barpanda A, Dash A, Gupta I, Nissa MU, Zhu H, Shah A, Duttagupta SP, Goel A, Srivastava S (2022) Evaluation of autoantibody signatures in pituitary adenoma patients using human proteome arrays. Proteomics Clin Appl 16(6):e2100111. (PMID: 10.1002/prca.20210011135939377)
San Segundo-Acosta P, Garranzo-Asensio M, Oeo-Santos C, Montero-Calle A, Quiralte J, Cuesta-Herranz J, Villalba M, Barderas R (2018) High-throughput screening of T7 phage display and protein microarrays as a methodological approach for the identification of IgE-reactive components. J Immunol Methods 456:44–53. (PMID: 10.1016/j.jim.2018.02.01129470975)
San Segundo-Acosta P, Montero-Calle A, Fuentes M, Rabano A, Villalba M, Barderas R (2019) Identification of Alzheimer’s disease autoantibodies and their target biomarkers by phage microarrays. J Proteome Res 18(7):2940–2953. (PMID: 10.1021/acs.jproteome.9b0025831136180)
San Segundo-Acosta P, Montero-Calle A, Jernbom-Falk A, Alonso-Navarro M, Pin E, Andersson E, Hellstrom C, Sanchez-Martinez M, Rabano A, Solis-Fernandez G, Pelaez-Garcia A, Martinez-Useros J, Fernandez-Acenero MJ, Manberg A, Nilsson P, Barderas R (2021) Multiomics profiling of Alzheimer’s disease serum for the identification of autoantibody biomarkers. J Proteome Res 20(11):5115–5130. (PMID: 10.1021/acs.jproteome.1c0063034628858)
Katchman BA, Barderas R, Alam R, Chowell D, Field MS, Esserman LJ, Wallstrom G, LaBaer J, Cramer DW, Hollingsworth MA, Anderson KS (2016) Proteomic mapping of p53 immunogenicity in pancreatic, ovarian, and breast cancers. Proteomics Clin Appl 10(7):720–731. (PMID: 10.1002/prca.201500096271213075553208)
Orenes-Pinero E, Barderas R, Rico D, Casal JI, Gonzalez-Pisano D, Navajo J, Algaba F, Piulats JM, Sanchez-Carbayo M (2010) Serum and tissue profiling in bladder cancer combining protein and tissue arrays. J Proteome Res 9(1):164–173. (PMID: 10.1021/pr900273u19883059)
Barderas R, Babel I, Casal JI (2010) Colorectal cancer proteomics, molecular characterization and biomarker discovery. Proteomics Clin Appl 4(2):159–178. (PMID: 10.1002/prca.20090013121137041)
Barderas R, Villar-Vázquez R, Casal JI (2014) Colorectal cancer circulating biomarkers. In: Preedy VR, Patel VB (eds) Biomarkers in cancer. Springer Netherlands, Dordrecht, pp 1–21.
Garranzo-Asensio M, San Segundo-Acosta P, Martinez-Useros J, Montero-Calle A, Fernandez-Acenero MJ, Haggmark-Manberg A, Pelaez-Garcia A, Villalba M, Rabano A, Nilsson P, Barderas R (2018) Identification of prefrontal cortex protein alterations in Alzheimer’s disease. Oncotarget 9(13):10847–10867. (PMID: 10.18632/oncotarget.24303295413815834268)
Jaeger PA, Lucin KM, Britschgi M, Vardarajan B, Huang RP, Kirby ED, Abbey R, Boeve BF, Boxer AL, Farrer LA, Finch N, Graff-Radford NR, Head E, Hoffree M, Huang R, Johns H, Karydas A, Knopman DS, Loboda A, Masliah E, Narasimhan R, Petersen RC, Podtelezhnikov A, Pradhan S, Rademakers R, Sun CH, Younkin SG, Miller BL, Ideker T, Wyss-Coray T (2016) Network-driven plasma proteomics expose molecular changes in the Alzheimer’s brain. Mol Neurodegener 11:31. (PMID: 10.1186/s13024-016-0095-2271123504845325)
Aparna GM, Tetala KKR (2023) Recent progress in development and application of DNA, protein, peptide, glycan, antibody, and aptamer microarrays. Biomol Ther 13(4):602.
Huang RP (2004) Cytokine protein arrays. Methods Mol Biol 264:215–231. (PMID: 15020793)
Fielden MR, Halgren RG, Dere E, Zacharewski TR (2002) GP3: GenePix post-processing program for automated analysis of raw microarray data. Bioinformatics 18(5):771–773. (PMID: 10.1093/bioinformatics/18.5.77112050078)
Sjoberg R, Mattsson C, Andersson E, Hellstrom C, Uhlen M, Schwenk JM, Ayoglu B, Nilsson P (2016) Exploration of high-density protein microarrays for antibody validation and autoimmunity profiling. New Biotechnol 33(5 Pt A):582–592. (PMID: 10.1016/j.nbt.2015.09.002)
Babel I, Barderas R, Diaz-Uriarte R, Martinez-Torrecuadrada JL, Sanchez-Carbayo M, Casal JI (2009) Identification of tumor-associated autoantigens for the diagnosis of colorectal cancer in serum using high density protein microarrays. Mol Cell Proteomics 8(10):2382–2395. (PMID: 10.1074/mcp.M800596-MCP200196386182758763)
Huang Y, Zhu H (2017) Protein array-based approaches for biomarker discovery in cancer. Genomics Proteomics Bioinformatics 15(2):73–81. (PMID: 10.1016/j.gpb.2017.03.001283924815414965)
Zhou Y, Liu Z, Rothschild KJ, Lim MJ (2016) Proteome-wide drug screening using mass spectrometric imaging of bead-arrays. Sci Rep 6:26125. (PMID: 10.1038/srep26125271941124872124)
Wang Z, Li Y, Hou B, Pronobis MI, Wang M, Wang Y, Cheng G, Weng W, Wang Y, Tang Y, Xu X, Pan R, Lin F, Wang N, Chen Z, Wang S, Ma LZ, Li Y, Huang D, Jiang L, Wang Z, Zeng W, Zhang Y, Du X, Lin Y, Li Z, Xia Q, Geng J, Dai H, Yu Y, Zhao XD, Yuan Z, Yan J, Nie Q, Zhang X, Wang K, Chen F, Zhang Q, Zhu Y, Zheng S, Poss KD, Tao SC, Meng X (2020) An array of 60,000 antibodies for proteome-scale antibody generation and target discovery. Sci Adv 6(11):eaax2271. (PMID: 10.1126/sciadv.aax2271321953357065887)
Howe E, Holton K, Nair S, Schlauch D, Sinha R, Quackenbush J (2010) MeV: MultiExperiment Viewer. In: Ochs M, Casagrande J, Davuluri R (eds) Biomedical informatics for cancer research. Springer, Boston.
Medina I, Carbonell J, Pulido L, Madeira SC, Goetz S, Conesa A, Tarraga J, Pascual-Montano A, Nogales-Cadenas R, Santoyo J, Garcia F, Marba M, Montaner D, Dopazo J (2010) Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Res 38(Web Server issue):W210–W213. (PMID: 10.1093/nar/gkq388204788232896184)
Morrissey ER, Diaz-Uriarte R (2009) Pomelo II: finding differentially expressed genes. Nucleic Acids Res 37(Web Server issue):W581–W586. (PMID: 10.1093/nar/gkp366194358792703955)
Alonso R, Salavert F, Garcia-Garcia F, Carbonell-Caballero J, Bleda M, Garcia-Alonso L, Sanchis-Juan A, Perez-Gil D, Marin-Garcia P, Sanchez R, Cubuk C, Hidalgo MR, Amadoz A, Hernansaiz-Ballesteros RD, Aleman A, Tarraga J, Montaner D, Medina I, Dopazo J (2015) Babelomics 5.0: functional interpretation for new generations of genomic data. Nucleic Acids Res 43(W1):W117–W121. (PMID: 10.1093/nar/gkv384258971334489263)
Howe EA, Sinha R, Schlauch D, Quackenbush J (2011) RNA-Seq analysis in MeV. Bioinformatics 27(22):3209–3210. (PMID: 10.1093/bioinformatics/btr490219764203208390)
Montero-Calle A, López-Janeiro A, Mendes ML, Perez-Hernandez D, Echevarría I, Ruz-Caracuel I, Heredia-Soto V, Mendiola M, Hardisson D, Argüeso P, Peláez-García A, Guzman-Aranguez A, Barderas R (2023) In-depth quantitative proteomics analysis revealed C1GALT1 depletion in ECC-1 cells mimics an aggressive endometrial cancer phenotype observed in cancer patients with low C1GALT1 expression. Cell Oncol 46(3):697–715. (PMID: 10.1007/s13402-023-00778-w)
Montero-Calle A, Lopez-Janeiro A, Mendes ML, Perez-Hernandez D, Echevarria I, Ruz-Caracuel I, Heredia-Soto V, Mendiola M, Hardisson D, Argueso P, Pelaez-Garcia A, Guzman-Aranguez A, Barderas R (2023) In-depth quantitative proteomics analysis revealed C1GALT1 depletion in ECC-1 cells mimics an aggressive endometrial cancer phenotype observed in cancer patients with low C1GALT1 expression. Cell Oncol (Dordr) 46(3):697–715. (PMID: 10.1007/s13402-023-00778-w36745330)
Montero-Calle A, San Segundo-Acosta P, Garranzo-Asensio M, Rabano A, Barderas R (2020) The molecular misreading of APP and UBB induces a humoral immune response in Alzheimer’s disease patients with diagnostic ability. Mol Neurobiol 57(2):1009–1020. (PMID: 10.1007/s12035-019-01809-031654319)
Valverde A, Montero-Calle A, Arévalo B, San Segundo-Acosta P, Serafín V, Alonso-Navarro M, Solís-Fernández G, Pingarrón JM, Campuzano S, Barderas R (2021) Phage-derived and aberrant HaloTag peptides immobilized on magnetic microbeads for Amperometric biosensing of serum autoantibodies and Alzheimer’s disease diagnosis. Analysis Sensing 1(4):161–165. (PMID: 10.1002/anse.202100024)
Villar-Vazquez R, Padilla G, Fernandez-Acenero MJ, Suarez A, Fuente E, Pastor C, Calero M, Barderas R, Casal JI (2016) Development of a novel multiplex beads-based assay for autoantibody detection for colorectal cancer diagnosis. Proteomics 16(8):1280–1290. (PMID: 10.1002/pmic.20150041326915739)
Valverde A, Montero-Calle A, Barderas R, Calero M, Yáñez-Sedeño P, Campuzano S, Pingarrón JM (2021) Electrochemical immunoplatform to unravel neurodegeneration and Alzheimer’s disease through the determination of neurofilament light protein. Electrochemica Acta 371:137815. (PMID: 10.1016/j.electacta.2021.137815)
Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29(4):365–371. (PMID: 10.1038/ng1201-36511726920)
Contributed Indexing: Keywords: Antibody microarrays; GenePix; Phage microarrays; Protein microarrays; Proteomics; Screening
Entry Date(s): Date Created: 20250702 Date Completed: 20250702 Latest Revision: 20250707
Update Code: 20250708
DOI: 10.1007/978-1-0716-4595-6_7
PMID: 40601145
Database: MEDLINE
Description
Abstract:Protein microarrays are powerful proteomics tools for high-throughput analysis. They allow to screen simultaneously large numbers of proteins for their binding specificity, enzymatic activity, and abundance in biological samples, among other uses. One widely used platform for protein microarray analysis is GenePix, which offers instrumentation and software solutions for data acquisition and analysis. Here, we provide an overview of the use of GenePix for protein microarray analysis, exploring its applications and advantages.<br /> (© 2025. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
ISSN:1940-6029
DOI:10.1007/978-1-0716-4595-6_7