Parallel assembly of dual-electrochemical cell: a novel approach for simultaneous multiplexed sensing analysis.
Saved in:
| Title: | Parallel assembly of dual-electrochemical cell: a novel approach for simultaneous multiplexed sensing analysis. |
|---|---|
| Authors: | Romanholo PVV; Instituto de Química, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil., Andrade LM; Instituto de Química, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil., Giglioti M; Metrohm Brasil Instrumentação Analítica Ltda, São Paulo, 05007-030, SP, Brazil., Luccas GZA; Metrohm Brasil Instrumentação Analítica Ltda, São Paulo, 05007-030, SP, Brazil., Machado SAS; Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, 13566-590, SP, Brazil., Sgobbi LF; Instituto de Química, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil. livia_sgobbi@ufg.br. |
| Source: | Mikrochimica acta [Mikrochim Acta] 2025 May 07; Vol. 192 (6), pp. 340. Date of Electronic Publication: 2025 May 07. |
| Publication Type: | Journal Article |
| Language: | English |
| Journal Info: | Publisher: Springer-Verlag Country of Publication: Austria NLM ID: 7808782 Publication Model: Electronic Cited Medium: Internet ISSN: 1436-5073 (Electronic) Linking ISSN: 00263672 NLM ISO Abbreviation: Mikrochim Acta Subsets: MEDLINE |
| Imprint Name(s): | Original Publication: Wien ; New York : Springer-Verlag. |
| MeSH Terms: | Electrochemical Techniques*/instrumentation , Electrochemical Techniques*/methods , Ascorbic Acid*/analysis , Biosensing Techniques*/methods , Biosensing Techniques*/instrumentation, Limit of Detection ; Electrodes |
| Abstract: | In the field of biosensing and chemical sensing, there is a growing demand for multiplexed detection and quantification of multiple targets within complex matrices. In electrochemical sensing, simultaneous multiplexed analysis is typically performed with multiple electrodes connected to a multichannel potentiostat. An alternative strategy involves using a single electrode capable of discriminating and detecting several analytes in a single measurement, which is, however, unfortunately limited to a selective group of molecules. Herein, we report a novel electrochemical method based on the parallel assembly of a dual-electrochemical cell (PADEC), which enables the simultaneous detection and quantification of solvent-incompatible analytes, prepared separately in two distinct electrochemical cells, using a single-channel potentiostat-thus achieving multichannel-like performance. This approach relies on connecting two electrochemical cells in parallel, allowing the concurrent measurement of distinct electrochemical responses from analytes that otherwise could not be simultaneously determined due to solvent incompatibility. As a proof of concept, the water-soluble vitamin C, and the lipid-soluble vitamin D3 were simultaneously determined, each in its respective optimized medium. The PADEC approach demonstrated performance comparable to individual detection methods, achieving limits of detection of 27 μM for vitamin C and 32 μM for vitamin D3 over a linear range of 20-400 μM. This strategy establishes a new approach for simultaneous, multiplexed electrochemical determination of analytes in different media. Moreover, this innovation may extend applications in electrochemistry beyond (bio)sensing to include areas such as electrocatalysis, energy and corrosion, potentially reducing dependence on multichannel potentiostats. (© 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.) |
| Competing Interests: | Declarations. Conflict of interest: The authors have no conflicts of interest to declare that are relevant to the content of this article. |
| References: | Fava EL, Silva TA, Prado TMD, Moraes FC, Faria RC, Fatibello-Filho O (2019) Electrochemical paper-based microfluidic device for high throughput multiplexed analysis. Talanta 203:280–286. https://doi.org/10.1016/j.talanta.2019.05.081. (PMID: 10.1016/j.talanta.2019.05.08131202339) Sadat Mousavi P, Smith SJ, Chen JB, Karlikow M, Tinafar A, Robinson C, Liu W, Ma D, Green AA, Kelley SO, Pardee K (2020) A multiplexed, electrochemical interface for gene-circuit-based sensors. Nat Chem 12:48–55. https://doi.org/10.1038/s41557-019-0366-y. (PMID: 10.1038/s41557-019-0366-y31767994) Zhu L, Liu X, Yang J, He Y, Li Y (2020) Application of multiplex microfluidic electrochemical sensors in monitoring hematological tumor biomarkers. Anal Chem 92:11981–11986. https://doi.org/10.1021/acs.analchem.0c02430. (PMID: 10.1021/acs.analchem.0c0243032786466) Yin K, Ding X, Xu Z, Li Z, Wang X, Zhao H, Otis C, Li B, Liu C (2021) Multiplexed colorimetric detection of SARS-CoV-2 and other pathogens in wastewater on a 3D printed integrated microfluidic chip. Sens Actuators B Chem 344:130242. https://doi.org/10.1016/j.snb.2021.130242. (PMID: 10.1016/j.snb.2021.130242341218128183101) Zheng XT, Zhong Y, Chu HE, Yu Y, Zhang Y, Chin JS, Becker DL, Su X, Loh XJ (2023) Carbon dot-doped hydrogel sensor array for multiplexed colorimetric detection of wound healing. ACS Appl Mater Interfaces 15:17675–17687. https://doi.org/10.1021/acsami.3c01185. (PMID: 10.1021/acsami.3c0118537001053) Chen J, Wen H, Zhang G, Lei F, Feng Q, Liu Y, Cao X, Dong H (2020) Multifunctional conductive hydrogel/thermochromic elastomer hybrid fibers with a core-shell segmental configuration for wearable strain and temperature sensors. ACS Appl Mater Interfaces 12:7565–7574. https://doi.org/10.1021/acsami.9b20612. (PMID: 10.1021/acsami.9b2061231971764) Imani S, Bandodkar AJ, Mohan AM, Kumar R, Yu S, Wang J, Mercier PP (2016) A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat Commun 7:11650. https://doi.org/10.1038/ncomms11650. (PMID: 10.1038/ncomms11650272121404879240) Romanholo PVV, Silva-Neto HA, Sgobbi LF, Coltro WKT (2022) Chapter 10 - Wearable hybrid sensors. In: Morales-Narvaez E, Dincer C (eds) Wearable physical, chemical and biological sensors. Elsevier, pp 255–274. (PMID: 10.1016/B978-0-12-821661-3.00006-9) Wang M, Yang Y, Min J, Song Y, Tu J, Mukasa D, Ye C, Xu C, Heflin N, McCune JS et al (2022) A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nature Biomedical Engineering 6:1225–1235. https://doi.org/10.1038/s41551-022-00916-z. (PMID: 10.1038/s41551-022-00916-z3597092810432133) Shirzaei Sani E, Xu C, Wang C, Song Y, Min J, Tu J, Solomon SA, Li J, Banks JL, Armstrong DG, Gao W (2023) A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Science Advances 9:eadf7388. https://doi.org/10.1126/sciadv.adf7388. (PMID: 10.1126/sciadv.adf73883696190510038347) Poletti F, Zanfrognini B, Favaretto L, Quintano V, Sun J, Treossi E, Melucci M, Palermo V, Zanardi C (2021) Continuous capillary-flow sensing of glucose and lactate in sweat with an electrochemical sensor based on functionalized graphene oxide. Sensors and Actuators B: Chemical 344:130253. https://doi.org/10.1016/j.snb.2021.130253. (PMID: 10.1016/j.snb.2021.130253) Zhang M, Guo W (2023) Simultaneous electrochemical detection of multiple heavy metal ions in milk based on silica-modified magnetic nanoparticles. Food Chem 406:135034. https://doi.org/10.1016/j.foodchem.2022.135034. (PMID: 10.1016/j.foodchem.2022.13503436459793) Lee G, Lee J, Kim J, Choi HS, Kim J, Lee S, Lee H (2017) Single microfluidic electrochemical sensor system for simultaneous multi-pulmonary hypertension biomarker analyses. Sci Rep 7:7545. https://doi.org/10.1038/s41598-017-06144-9. (PMID: 10.1038/s41598-017-06144-9287903345548735) Wei F, Patel P, Liao W, Chaudhry K, Zhang L, Arellano-Garcia M, Hu S, Elashoff D, Zhou H, Shukla S et al (2009) Electrochemical sensor for multiplex biomarkers detection. Clin Cancer Res 15:4446–4452. https://doi.org/10.1158/1078-0432.CCR-09-0050. (PMID: 10.1158/1078-0432.CCR-09-0050195091372799532) Bae SH, Kim D, Chang SY, Hur J, Kim H, Lee JW, Zhu B, Han TH, Choi C, Huffaker DL et al (2020) Hybrid integrated photomedical devices for wearable vital sign tracking. ACS Sens 5:1582–1588. https://doi.org/10.1021/acssensors.9b02529. (PMID: 10.1021/acssensors.9b0252932233394) Choi J, Bandodkar AJ, Reeder JT, Ray TR, Turnquist A, Kim SB, Nyberg N, Hourlier-Fargette A, Model JB, Aranyosi AJ et al (2019) Soft, skin-integrated multifunctional microfluidic systems for accurate colorimetric analysis of sweat biomarkers and temperature. ACS Sens 4:379–388. https://doi.org/10.1021/acssensors.8b01218. (PMID: 10.1021/acssensors.8b0121830707572) Gao B, Elbaz A, He Z, Xie Z, Xu H, Liu S, Su E, Liu H, Gu Z (2018) Bioinspired kirigami fish-based highly stretched wearable biosensor for human biochemical-physiological hybrid monitoring. Adv Mater Technol 3. https://doi.org/10.1002/admt.201700308. Forderhase AG, Styers HC, Lee CA, Sombers LA (2020) Simultaneous voltammetric detection of glucose and lactate fluctuations in rat striatum evoked by electrical stimulation of the midbrain. Anal Bioanal Chem 412:6611–6624. https://doi.org/10.1007/s00216-020-02797-0. (PMID: 10.1007/s00216-020-02797-0326661417484411) Nellaiappan S, Kumar AS (2018) A bipotentiostat based separation-free method for simultaneous flow injection analysis of chromium (III) and (VI) species. Electrochim Acta 273:248–256. https://doi.org/10.1016/j.electacta.2018.04.025. (PMID: 10.1016/j.electacta.2018.04.025) Soleh A, Kanatharana P, Thavarungkul P, Limbut W (2020) Novel electrochemical sensor using a dual-working electrode system for the simultaneous determination of glucose, uric acid and dopamine. Microchemical Journal 153:104379. https://doi.org/10.1016/j.microc.2019.104379. (PMID: 10.1016/j.microc.2019.104379) Marques RCB, Costa-Rama E, Viswanathan S, Nouws HPA, Costa-García A, Delerue-Matos C, González-García MB (2018) Voltammetric immunosensor for the simultaneous analysis of the breast cancer biomarkers CA 15–3 and HER2-ECD. Sens Actuators, B Chem 255:918–925. https://doi.org/10.1016/j.snb.2017.08.107. (PMID: 10.1016/j.snb.2017.08.107) Azizpour Moallem Q, Beitollahi H (2022) Electrochemical sensor for simultaneous detection of dopamine and uric acid based on a carbon paste electrode modified with nanostructured Cu-based metal-organic frameworks. Microchem J 177:107261. https://doi.org/10.1016/j.microc.2022.107261. (PMID: 10.1016/j.microc.2022.107261) Wei Y, Liu Y, Xu Z, Wang S, Chen B, Zhang D, Fang Y (2020) Simultaneous detection of ascorbic acid, dopamine, and uric acid using a novel electrochemical sensor based on palladium nanoparticles/reduced graphene oxide nanocomposite. International Journal of Analytical Chemistry 2020:8812443. https://doi.org/10.1155/2020/8812443. (PMID: 10.1155/2020/8812443333811847759412) Yue X, Li Z, Zhao S (2020) A new electrochemical sensor for simultaneous detection of sulfamethoxazole and trimethoprim antibiotics based on graphene and ZnO nanorods modified glassy carbon electrode. Microchem J 159:105440. https://doi.org/10.1016/j.microc.2020.105440. (PMID: 10.1016/j.microc.2020.105440) Ahmed YM, Eldin MA, Galal A, Atta NF (2024) Electrochemical sensor based on PEDOT/CNTs-graphene oxide for simultaneous determination of hazardous hydroquinone, catechol, and nitrite in real water samples. Sci Rep 14:5654. https://doi.org/10.1038/s41598-024-54683-9. (PMID: 10.1038/s41598-024-54683-93845402210920748) Nantaphol S, Kava AA, Channon RB, Kondo T, Siangproh W, Chailapakul O, Henry CS (2019) Janus electrochemistry: simultaneous electrochemical detection at multiple working conditions in a paper-based analytical device. Anal Chim Acta 1056:88–95. https://doi.org/10.1016/j.aca.2019.01.026. (PMID: 10.1016/j.aca.2019.01.026307974656814273) Gutierrez-Capitan M, Baldi A, Merlos A, Fernandez-Sanchez C (2022) Array of individually addressable two-electrode electrochemical cells sharing a single counter/reference electrode for multiplexed enzyme activity measurements. Biosens Bioelectron 201:113952. https://doi.org/10.1016/j.bios.2021.113952. (PMID: 10.1016/j.bios.2021.11395234999523) Wang J, Diao P (2020) Simultaneous detection of ammonia and nitrate using a modified electrode with two regions. Microchemical Journal 154:104649. https://doi.org/10.1016/j.microc.2020.104649. (PMID: 10.1016/j.microc.2020.104649) Almarri F, Haq N, Alanazi FK, Mohsin K, Alsarra IA, Aleanizy FS, Shakeel F (2017) Solubility and thermodynamic function of vitamin D3 in different mono solvents. J Mol Liq 229:477–481. https://doi.org/10.1016/j.molliq.2016.12.105. (PMID: 10.1016/j.molliq.2016.12.105) Hsu HY, Tsai YC, Fu CC, Wu JS (2012) Degradation of ascorbic acid in ethanolic solutions. J Agric Food Chem 60:10696–10701. https://doi.org/10.1021/jf3032342. (PMID: 10.1021/jf303234222994409) Kairy P, Hossain MM, Khan MAR, Almahri A, Rahman MM, Hasnat MA (2022) Electrocatalytic oxidation of ascorbic acid in the basic medium over electrochemically functionalized glassy carbon surface. Surfaces and Interfaces 33:102200. https://doi.org/10.1016/j.surfin.2022.102200. (PMID: 10.1016/j.surfin.2022.102200) Dodevska T, Hadzhiev D, Shterev I (2022) A review on electrochemical microsensors for ascorbic acid detection: clinical, pharmaceutical, and food safety applications. Micromachines (Basel) 14. https://doi.org/10.3390/mi14010041. Pisoschi AM, Pop A, Serban AI, Fafaneata C (2014) Electrochemical methods for ascorbic acid determination. Electrochim Acta 121:443–460. https://doi.org/10.1016/j.electacta.2013.12.127. (PMID: 10.1016/j.electacta.2013.12.127) Xi L, Ren D, Luo J, Zhu Y (2010) Electrochemical analysis of ascorbic acid using copper nanoparticles/polyaniline modified glassy carbon electrode. J Electroanal Chem 650:127–134. https://doi.org/10.1016/j.jelechem.2010.08.014. (PMID: 10.1016/j.jelechem.2010.08.014) Barbir F (2013) Chapter three-fuel cell electrochemistry. In: Barbir F (ed) PEM fuel cells, 2nd edn. Academic Press, Boston, pp 33–72. Perez N (2004) Kinetics of concentration polarization. In: Perez N (ed) Electrochemistry and corrosion science. Springer, US, Boston, pp 121–154. Ngai KS, Tan WT, Zainal Z, Zawawi RM, Zidan M (2013) Voltammetry detection of ascorbic acid at glassy carbon electrode modified by single-walled carbon nanotube/zinc oxide. Int J Electrochem Sci 8:10557–10567. (PMID: 10.1016/S1452-3981(23)13131-2) Liu S, Jiang X, Yang M (2019) Electrochemical sensing of L-ascorbic acid by using a glassy carbon electrode modified with a molybdophosphate film. Mikrochim Acta 186:445. https://doi.org/10.1007/s00604-019-3562-y. (PMID: 10.1007/s00604-019-3562-y31197579) Mazzara F, Patella B, Aiello G, O’Riordan A, Torino C, Vilasi A, Inguanta R (2021) Electrochemical detection of uric acid and ascorbic acid using r-GO/NPs based sensors. Electrochimica Acta 388. https://doi.org/10.1016/j.electacta.2021.138652. Ruiz-Valdepeñas Montiel V, Sempionatto JR, Vargas E, Bailey E, May J, Bulbarello A, Düsterloh A, Matusheski N, Wang J (2021) Decentralized vitamin C & D dual biosensor chip: toward personalized immune system support. Biosens Bioelectron 194:113590. https://doi.org/10.1016/j.bios.2021.113590. (PMID: 10.1016/j.bios.2021.113590344742788437685) Zhang X, Zhang Y-C, Ma L-X (2016) One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sens Actuators, B Chem 227:488–496. https://doi.org/10.1016/j.snb.2015.12.073. (PMID: 10.1016/j.snb.2015.12.073) Chauhan D, Kumar R, Panda AK, Solanki PR (2019) An efficient electrochemical biosensor for Vitamin-D3 detection based on aspartic acid functionalized gadolinium oxide nanorods. J Market Res 8:5490–5503. https://doi.org/10.1016/j.jmrt.2019.09.017. (PMID: 10.1016/j.jmrt.2019.09.017) Men K (2017) Electrochemical detection of vitamin D2 and D3 based on a Au-Pd modified glassy carbon electrode. Int J Electrochem Sci: 9555–9564. https://doi.org/10.20964/2017.10.15. Đurović A, Stojanović Z, Kravić S, Kos J, Richtera L (2019) Electrochemical determination of vitamin D3 in pharmaceutical products by using boron doped diamond electrode. Electroanalysis 32:741–748. https://doi.org/10.1002/elan.201900532. (PMID: 10.1002/elan.201900532) Bora H, Mandal D, Chandra A (2022) High-performance, nitrogen-doped, carbon-nanotube-based electrochemical sensor for vitamin D3 detection. ACS Appl Bio Mater 5:1721–1730. https://doi.org/10.1021/acsabm.2c00094. (PMID: 10.1021/acsabm.2c0009435352938) |
| Grant Information: | 88882.386428/2019-01 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; 403306/2023-0 Conselho Nacional de Desenvolvimento Científico e Tecnológico; 202310267001369 Fundação de Amparo à Pesquisa do Estado de Goiás |
| Contributed Indexing: | Keywords: Electrochemical sensors; Monochannel potentiostat; Multiplexed analysis; Simultaneous detection; Vitamin C; Vitamin D3 |
| Substance Nomenclature: | PQ6CK8PD0R (Ascorbic Acid) |
| Entry Date(s): | Date Created: 20250506 Date Completed: 20250507 Latest Revision: 20250610 |
| Update Code: | 20250611 |
| DOI: | 10.1007/s00604-025-07194-x |
| PMID: | 40328952 |
| Database: | MEDLINE |
Be the first to leave a comment!
Full Text Finder
Nájsť tento článok vo Web of Science