Bio inspired multi agent system for distributed power and interference management in MIMO OFDM networks.
Uloženo v:
| Název: | Bio inspired multi agent system for distributed power and interference management in MIMO OFDM networks. |
|---|---|
| Autoři: | Kanmani R; Department of Electronics and Communication Engineering, Sri Ramakrishna Institute of Technology, Coimbatore, Tamil Nadu, 641010, India. kanmanivan@gmail.com., Praveena SM; Department of Electronics and Communication Engineering, Sri Ramakrishna Institute of Technology, Coimbatore, Tamil Nadu, 641010, India. |
| Zdroj: | Scientific reports [Sci Rep] 2025 Apr 21; Vol. 15 (1), pp. 13740. Date of Electronic Publication: 2025 Apr 21. |
| Způsob vydávání: | Journal Article |
| Jazyk: | English |
| Informace o časopise: | Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: PubMed not MEDLINE; MEDLINE |
| Imprint Name(s): | Original Publication: London : Nature Publishing Group, copyright 2011- |
| Abstrakt: | MIMO-OFDM systems are essential for high-capacity wireless networks, offering improved data throughput and spectral efficiency necessary for dense user environments. Effective power and interference management are pivotal for maintaining signal quality and enhancing resource utilization. Existing techniques for resource allocation and interference control in massive MIMO-OFDM networks face challenges related to scalability, adaptability, and energy efficiency. To address these limitations, this work proposes a novel bio-inspired Termite Colony Optimization-based Multi-Agent System (TCO-MAS) integrated with an LSTM model for predictive adaptability. The deep learning LSTM model aids agents in forecasting future network conditions, enabling dynamic adjustment of pheromone levels for optimized power allocation and interference management. By simulating termite behavior, agents utilize pheromone-based feedback to achieve localized optimization decisions with minimal communication overhead. Experimental analyses evaluated the proposed TCO-MAS across key metrics such as Sum Rate, Energy Efficiency, Spectral Efficiency, Latency, and Fairness Index. Results demonstrate that TCO-MAS outperformed conventional algorithms, achieving a 20% higher sum rate and 15% better energy efficiency under high-load conditions. Limitations include dependency on specific pheromone adjustment parameters, which may require fine-tuning for diverse scenarios. Practical implications highlight its potential for scalable and adaptive deployment in ultra-dense wireless networks, though additional field testing is recommended to ensure robustness in varied real-world environments. (© 2025. The Author(s).) |
| Competing Interests: | Declarations. Competing intertests: The author has no relevant financial or non-financial interests to disclose. Consent to publication: All authors listed above have consented to get their data and image published. |
| References: | Ramadhan, A. J. & Zadeh, A. T. The MIMO-OTFS technique in the next 6G communications. Eng. Access 10(2), 166–180. https://doi.org/10.14456/mijet.2024.18 (2024). (PMID: 10.14456/mijet.2024.18) Dutta, P. et al. Evaluating the efficiency of non-orthogonal MU-MIMO methods in smart cities technologies & 5G communication. Sustainability 15(1), 236. https://doi.org/10.3390/su15010236 (2022). (PMID: 10.3390/su15010236) Li, Z. et al. Robust sum-rate maximization in transmissive RMS transceiver-enabled SWIPT networks. IEEE Internet Things J. 10(8), 7259–7271. https://doi.org/10.1109/JIOT.2022.3228868 (2022). (PMID: 10.1109/JIOT.2022.3228868) Shi, C., Cui, Y., Chu, Y., Yuan, W. & Guo, W. Joint subcarrier and power allocation scheme for sum-rate maximization in OTFS-NOMA system. IEEE Commun. Lett. 28(8), 1889–1893. https://doi.org/10.1109/LCOMM.2024.3416133 (2024). (PMID: 10.1109/LCOMM.2024.3416133) Li, R., Sun, S. & Tao, M. Ergodic achievable rate maximization of RIS-assisted millimeter-wave MIMO–OFDM communication systems. IEEE Trans. Wirel. Commun. 22(3), 2171–2184. https://doi.org/10.1109/TWC.2022.3210227 (2022). (PMID: 10.1109/TWC.2022.3210227) Xiaofeng, S. & Yi, J. Hybrid block diagonalization precoding for multi-user weighted sum-rate maximization. China Commun. 21(8), 127–141. https://doi.org/10.23919/JCC.ja.2022-0117 (2024). (PMID: 10.23919/JCC.ja.2022-0117) Jadidi, M., Khoueini, A. M., Mohammadi, A. & Meghdadi, V. Performance analysis and power allocation for uplink cell-free massive MIMO system with nonlinear power amplifier. IEEE Trans. Commun. 72(9), 5473–5485. https://doi.org/10.1109/TCOMM.2024.3387854 (2024). (PMID: 10.1109/TCOMM.2024.3387854) Padmaja, C. & Malleswari, B. L. Turbo-coded MIMO–OFDM channel estimation using the chaotic grey wolf optimizer and genetic algorithm. IETE J. Res. 70(3), 2286–2297. https://doi.org/10.1080/03772063.2023.2180227 (2023). (PMID: 10.1080/03772063.2023.2180227) Manoharan, J. S. A metaheuristic approach towards enhancement of network lifetime in wireles s sensor networks. KSII Trans. Internet Inf. Syst. (TIIS) 17(4), 1276–1295. https://doi.org/10.3837/tiis.2023.04.013 (2023). (PMID: 10.3837/tiis.2023.04.013) Manoharan, J. S. Double attribute-based node deployment in wireless sensor networks using novel weight-based clustering approach. Sādhanā 47(3), 1–11. https://doi.org/10.1007/s12046-022-01939-7 (2022). (PMID: 10.1007/s12046-022-01939-7) Rajput, K. P. et al. Robust decentralized and distributed estimation of a correlated parameter vector in MIMO-OFDM wireless sensor networks. IEEE Trans. Commun. 69(10), 6894–6908. https://doi.org/10.1109/TCOMM.2021.3092409 (2021). (PMID: 10.1109/TCOMM.2021.3092409) Kumar, P. S., Chawla, A., Srivastava, S., Jagannatham, A. K. & Hanzo, L. Decision fusion in centralized and distributed multiuser millimeter-wave massive MIMO-OFDM sensor networks. IEEE Open J. Commun. Soc. 5, 185–201. https://doi.org/10.1109/OJCOMS.2023.3340096 (2023). (PMID: 10.1109/OJCOMS.2023.3340096) Moazzen, H., Mohammadi, A. & Majidi, M. Performance analysis of linear precoded MU–MIMO–OFDM systems with nonlinear power amplifiers and correlated channel. IEEE Trans. Commun. 67(10), 6753–6765. https://doi.org/10.1109/TCOMM.2019.2922197 (2019). (PMID: 10.1109/TCOMM.2019.2922197) ElSamadouny, A., El Shafie, A., Abdallah, M. & Al-Dhahir, N. Secure sum-rate-optimal MIMO multicasting over medium-voltage NB-PLC networks. IEEE Trans. Smart Grid 9(4), 2954–2963. https://doi.org/10.1109/TSG.2016.2623664 (2016). (PMID: 10.1109/TSG.2016.2623664) Sun, C. et al. Beam domain MIMO-OFDM optical wireless communications with PAPR reduction. IEEE Photon. J. 15(2), 1–10. https://doi.org/10.1109/JPHOT.2023.3246487 (2023). (PMID: 10.1109/JPHOT.2023.3246487) Braga, I. M. et al. Joint resource allocation and transceiver design for sum-rate maximization under latency constraints in multicell MU-MIMO systems. IEEE Trans. Commun. 69(7), 4569–4584. https://doi.org/10.1109/TCOMM.2021.3071439 (2021). (PMID: 10.1109/TCOMM.2021.3071439) Jiang, W. & Schotten, H. D. Cell-free massive MIMO–OFDM transmission over frequency-selective fading channels. IEEE Commun. Lett. 25(8), 2718–2722. https://doi.org/10.1109/LCOMM.2021.3085965 (2021). (PMID: 10.1109/LCOMM.2021.3085965) Deng, X. et al. Two-dimensional power allocation for optical MIMO–OFDM systems over low-pass channels. IEEE Trans. Veh. Technol. 71(7), 7244–7257. https://doi.org/10.1109/TVT.2022.3162621 (2022). (PMID: 10.1109/TVT.2022.3162621) Wei, Z. et al. Sum-rate maximization for IRS-assisted UAV OFDMA communication systems. IEEE Trans. Wirel. Commun. 20(4), 2530–2550. https://doi.org/10.1109/TWC.2020.3042977 (2020). (PMID: 10.1109/TWC.2020.3042977) Cunha, T. E. B. & Linnartz, J. P. M. G. OFDM bitloading in distributed MIMO OWC using power-constrained LEDs. IEEE Acces. 11, 122470–122487. https://doi.org/10.1109/TVT.2020.3004889 (2020). (PMID: 10.1109/TVT.2020.3004889) Ko, K., Lee, J. & Shin, W. Joint power allocation and scheduling techniques for BER minimization in multiuser MIMO systems. IEEE Access 9, 66675–66686. https://doi.org/10.1109/ACCESS.2021.3074980 (2021). (PMID: 10.1109/ACCESS.2021.3074980) Yang, Y., Dang, S., Wen, M. & Guizani, M. Millimeter wave MIMO–OFDM with index modulation: A Pareto paradigm on spectral-energy efficiency trade-off. IEEE Trans. Wirel. Commun. 20(10), 6371–6386. https://doi.org/10.1109/TWC.2021.3073692 (2021). (PMID: 10.1109/TWC.2021.3073692) Huang, H. et al. Deep learning-based sum data rate and energy efficiency optimization for MIMO-NOMA systems. IEEE Trans. Wirel. Commun. 19(8), 5373–5388. https://doi.org/10.1109/TWC.2020.2992786 (2020). (PMID: 10.1109/TWC.2020.2992786) Jain, S. K. & Kaur, B. Hybrid sharing and power allocation using water filling algorithm for MIMO-OFDM based cognitive radio network. ICTACT J. Commun. Technol. 12(2), 2402–2406. https://doi.org/10.21917/ijct.2021.0355 (2021). (PMID: 10.21917/ijct.2021.0355) Blum, C. & Roli, A. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003). (PMID: 10.1145/937503.937505) |
| Contributed Indexing: | Keywords: Deep learning; Interference; Long short-term memory network; MIMO; OFDM; Optimization algorithms; Power allocation; Termite colony optimization |
| Entry Date(s): | Date Created: 20250421 Latest Revision: 20250424 |
| Update Code: | 20250424 |
| PubMed Central ID: | PMC12012048 |
| DOI: | 10.1038/s41598-025-97944-x |
| PMID: | 40258916 |
| Databáze: | MEDLINE |
Buďte první, kdo okomentuje tento záznam!
Full Text Finder
Nájsť tento článok vo Web of Science