Enhancing breast cancer diagnosis: transfer learning on DenseNet with neural hashing for histopathology fine-grained image classification.

Uloženo v:
Podrobná bibliografie
Název: Enhancing breast cancer diagnosis: transfer learning on DenseNet with neural hashing for histopathology fine-grained image classification.
Autoři: Taheri F; Department of Computer Engineering, ST.C., Islamic Azad University, Tehran, Iran., Rahbar K; Department of Computer Engineering, ST.C., Islamic Azad University, Tehran, Iran. kambiz.rahbar@iau.ac.ir.
Zdroj: Medical & biological engineering & computing [Med Biol Eng Comput] 2025 Sep; Vol. 63 (9), pp. 2717-2731. Date of Electronic Publication: 2025 Apr 06.
Způsob vydávání: Journal Article
Jazyk: English
Informace o časopise: Publisher: Springer Country of Publication: United States NLM ID: 7704869 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1741-0444 (Electronic) Linking ISSN: 01400118 NLM ISO Abbreviation: Med Biol Eng Comput Subsets: MEDLINE
Imprint Name(s): Publication: New York, NY : Springer
Original Publication: Stevenage, Eng., Peregrinus.
Výrazy ze slovníku MeSH: Breast Neoplasms*/diagnosis , Breast Neoplasms*/pathology , Breast Neoplasms*/diagnostic imaging , Neural Networks, Computer* , Diagnosis, Computer-Assisted*/methods , Image Interpretation, Computer-Assisted*/methods , Image Processing, Computer-Assisted*/methods , Machine Learning*, Humans ; Female ; Algorithms ; Convolutional Neural Networks
Abstrakt: Breast cancer is one of the most common types of cancer worldwide. The number of breast cancer cases highlights the importance of disease management at various levels. One complementary method for breast cancer classification is microscopic imaging. Manual histopathological image analysis is time-consuming and prone to human errors. Computer-aided diagnosis (CAD) has emerged as a popular and feasible solution for analyzing medical images due to extensive advancements. Microscopic image analysis can assist physicians in more accurate diagnosis. However, the performance of CAD models needs improvement for practical purposes. In the proposed approach, a baseline model called DenseNet is considered for extracting features from histopathological images. The pre-trained DenseNet model alone is not sufficient for fine-grained feature discrimination between benign and malignant histopathological image samples. Therefore, two hash layers are incorporated at the end of the network to enhance feature separability of the two classes, benign and malignant. The performance of the proposed method is evaluated on the BreakHis histopathological image dataset, with magnifications of 40 × , 100 × , 200 × , and 400 × . The evaluation results confirm the effectiveness of the proposed approach compared to other existing approaches. Furthermore, the interpretability of the proposed approach is demonstrated using the LIME technique.
(© 2025. International Federation for Medical and Biological Engineering.)
Competing Interests: Declarations. Ethics approval: Not applicable. Competing interests: The authors declare no competing interests.
References: Lima ZS, Ebadi MR, Amjad G, Younesi L (2019) Application of imaging technologies in breast cancer detection: a review article. Open Access Maced J Med Sci 7(5):838. https://doi.org/10.3889/OAMJMS.2019.171. (PMID: 10.3889/OAMJMS.2019.171309628496447343)
Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72(1):7–33. (PMID: 35020204)
Abbas S, Jalil Z, Javed AR, Batool I, Khan MZ, Noorwali A, Akbar A (2021) BCD-WERT: a novel approach for breast cancer detection using whale optimization based efficient features and extremely randomized tree algorithm. PeerJ Comput Sci 7:1–20. https://doi.org/10.7717/PEERJ-CS.390. (PMID: 10.7717/PEERJ-CS.390)
Gao W, Zhang S, Guo J, Wei X, Li X, Diao Y, Chen X (2021) Investigation of synthetic relaxometry and diffusion measures in the differentiation of benign and malignant breast lesions as compared to BI-RADS. J Magn Reson Imaging 53(4):1118–1127. https://doi.org/10.1002/JMRI.27435. (PMID: 10.1002/JMRI.2743533179809)
Kashyap D, Pal D, Sharma R, Garg VK, Goel N, Koundal D, Belay A (2022) Global increase in breast cancer incidence: risk factors and preventive measures. BioMed Res Int. https://doi.org/10.1155/2022/9605439.
Krishna S, Suganthi SS, Bhavsar A, Yesodharan J, Krishnamoorthy S (2023) An interpretable decision-support model for breast cancer diagnosis using histopathology images. J Pathol Informat 14:100319. https://doi.org/10.1016/J.JPI.2023.100319. (PMID: 10.1016/J.JPI.2023.100319)
Koivukoski S, Khan U, Ruusuvuori P, Latonen L (2023) Unstained tissue imaging and virtual hematoxylin and eosin staining of histologic whole slide images. Lab Invest 103(5):100070. https://doi.org/10.1016/J.LABINV.2023.100070. (PMID: 10.1016/J.LABINV.2023.10007036801642)
Rashmi R, Prasad K, Udupa CBK (2022) Breast histopathological image analysis using image processing techniques for diagnostic purposes: a methodological review. J Med Syst 46(1):3. https://doi.org/10.1007/S10916-021-01786-9. (PMID: 10.1007/S10916-021-01786-9)
Diao S, Luo W, Hou J, Lambo R, Al-Kuhali HA, Zhao H, Qin W (2023) Deep multi-magnification similarity learning for histopathological image classification. IEEE J Biomed Health Inform 27(3):1535–1545. https://doi.org/10.1109/JBHI.2023.3237137. (PMID: 10.1109/JBHI.2023.323713737021898)
Aswathy MA, Jagannath M (2017) Detection of breast cancer on digital histopathology images: present status and future possibilities. Informat Med Unlocked 8:74–79. https://doi.org/10.1016/J.IMU.2016.11.001. (PMID: 10.1016/J.IMU.2016.11.001)
Ribli D, Horváth A, Unger Z, Pollner P, Csabai I (2018) Detecting and classifying lesions in mammograms with deep learning. Sci Rep 8(1):1–7. https://doi.org/10.1038/s41598-018-22437-z. (PMID: 10.1038/s41598-018-22437-z)
Nemade V, Pathak S, Dubey AK (2022) A systematic literature review of breast cancer diagnosis using machine intelligence techniques. Arch Comput Methods Eng 29(6):4401–4430. https://doi.org/10.1007/S11831-022-09738-3. (PMID: 10.1007/S11831-022-09738-3)
Srikantamurthy MM, Rallabandi VPS, Dudekula DB, Natarajan S, Park J (2023) Classification of benign and malignant subtypes of breast cancer histopathology imaging using hybrid CNN-LSTM based transfer learning. BMC Med Imaging 23(1):1–15. https://doi.org/10.1186/S12880-023-00964-0/FIGURES/11. (PMID: 10.1186/S12880-023-00964-0/FIGURES/11)
Zhu Z, Wang SH, Zhang YD (2023) A survey of convolutional neural network in breast cancer. Comput Modeling Eng Sci: CMES 136(3):2127. https://doi.org/10.32604/CMES.2023.025484. (PMID: 10.32604/CMES.2023.02548437152661)
Desai M, Shah M (2021) An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and convolutional neural network (CNN). Clinical eHealth 4:1–11. https://doi.org/10.1016/J.CEH.2020.11.002. (PMID: 10.1016/J.CEH.2020.11.002)
Gao Z, Lu Z, Wang J, Ying S, Shi J (2022) A convolutional neural network and graph convolutional network based framework for classification of breast histopathological images. IEEE J Biomed Health Inform 26(7):3163–3173. https://doi.org/10.1109/JBHI.2022.3153671. (PMID: 10.1109/JBHI.2022.315367135196251)
Majumdar S, Pramanik P, Sarkar R (2023) Gamma function based ensemble of CNN models for breast cancer detection in histopathology images. Expert Syst Appl 213:119022. https://doi.org/10.1016/J.ESWA.2022.119022. (PMID: 10.1016/J.ESWA.2022.119022)
Rashmi R, Prasad K, Udupa CBK (2023) Region-based feature enhancement using channel-wise attention for classification of breast histopathological images. Neural Comput Appl 35(8):5839–5854. https://doi.org/10.1007/S00521-022-07966-Z/FIGURES/15. (PMID: 10.1007/S00521-022-07966-Z/FIGURES/15)
Abdul Hayum A, Jaya J, Paulchamy B, Sivakumar R (2023) A modified recurrent neural network (MRNN) model for and breast cancer classification system. Automatika 64(4):1193–1203. https://doi.org/10.1080/00051144.2023.2253064. (PMID: 10.1080/00051144.2023.2253064)
Huang S, Nianguang CAI, Penzuti Pacheco P, Narandes S, Wang Y, Wayne XU (2018) Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics Proteomics 15(1):41. https://doi.org/10.21873/CGP.20063. (PMID: 10.21873/CGP.2006329275361)
Ghiasi MM, Zendehboudi S (2021) Application of decision tree-based ensemble learning in the classification of breast cancer. Comput Biol Med 128:104089. https://doi.org/10.1016/J.COMPBIOMED.2020.104089. (PMID: 10.1016/J.COMPBIOMED.2020.10408933338982)
Naji MA, Filali SE, Aarika K, Benlahmar EH, Abdelouhahid RA, Debauche O (2021) Machine learning algorithms for breast cancer prediction and diagnosis. Procedia Comput Sci 191:487–492. https://doi.org/10.1016/J.PROCS.2021.07.062. (PMID: 10.1016/J.PROCS.2021.07.062)
Araujo T, Aresta G, Castro E, Rouco J, Aguiar P, Eloy C, Campilho A et al (2017) Classification of breast cancer histology images using convolutional neural networks. PLoS ONE 12(6). https://doi.org/10.1371/JOURNAL.PONE.0177544.
Maleki A, Raahemi M, Nasiri H (2023) Breast cancer diagnosis from histopathology images using deep neural network and XGBoost. Biomed Signal Process Control 86:105152. https://doi.org/10.1016/J.BSPC.2023.105152. (PMID: 10.1016/J.BSPC.2023.105152)
Wang C, Gong W, Cheng J, Qian Y (2022) DBLCNN: Dependency-based lightweight convolutional neural network for multi-classification of breast histopathology images. Biomed Signal Process Control 73:103451. https://doi.org/10.1016/J.BSPC.2021.103451. (PMID: 10.1016/J.BSPC.2021.103451)
Mall PK, Singh PK, Srivastav S, Narayan V, Paprzycki M, Jaworska T, Ganzha M (2023) A comprehensive review of deep neural networks for medical image processing: recent developments and future opportunities. Healthcare Analytics 4:100216. https://doi.org/10.1016/J.HEALTH.2023.100216. (PMID: 10.1016/J.HEALTH.2023.100216)
Ren G, Li B, Lam SK, Xiao H, Huang YH, Cheung AL, yin, Cai, J. (2022) A transfer learning framework for deep learning-based CT-to-perfusion mapping on lung cancer patients. Front Oncol 12:883516. https://doi.org/10.3389/FONC.2022.883516/BIBTEX. (PMID: 10.3389/FONC.2022.883516/BIBTEX358478749283770)
Ashraf FB, Alam SMM, Sakib SM (2024) Enhancing breast cancer classification via histopathological image analysis: leveraging self-supervised contrastive learning and transfer learning. Heliyon 10(2):e24094. https://doi.org/10.1016/J.HELIYON.2024.E24094. (PMID: 10.1016/J.HELIYON.2024.E240943829349310827455)
Liu M, Hu L, Tang Y, Wang C, He Y, Zeng C, Huo W (2022) A deep learning method for breast cancer classification in the pathology images. IEEE J Biomed Health Inform 26(10):5025–5032. https://doi.org/10.1109/JBHI.2022.3187765. (PMID: 10.1109/JBHI.2022.318776535776828)
Khamparia A, Bharati S, Podder P, Gupta D, Khanna A, Phung TK, Thanh DNH (2021) Diagnosis of breast cancer based on modern mammography using hybrid transfer learning. Multidimension Syst Signal Process 32(2):747. https://doi.org/10.1007/S11045-020-00756-7. (PMID: 10.1007/S11045-020-00756-7)
Liu L, Wang Y, Zhang P, Qiao H, Sun T, Zhang H, Shang H (2023) Collaborative transfer network for multi-classification of breast cancer histopathological images. IEEE J Biomed Health Inform. https://doi.org/10.1109/JBHI.2023.3283042. (PMID: 10.1109/JBHI.2023.32830423810033510519736)
Eroğlu Y, Yildirim M, Çinar A (2021) Convolutional Neural Networks based classification of breast ultrasonography images by hybrid method with respect to benign, malignant, and normal using mRMR. Comput Biol Med 133:104407. https://doi.org/10.1016/J.COMPBIOMED.2021.104407. (PMID: 10.1016/J.COMPBIOMED.2021.10440733901712)
Simonyan EO, Badejo JA, Weijin JS (2023) Histopathological breast cancer classification using CNN. Mater Today Proc. https://doi.org/10.1016/J.MATPR.2023.10.154.
Khan SI, Shahrior A, Karim R, Hasan M, Rahman A (2022) MultiNet: a deep neural network approach for detecting breast cancer through multi-scale feature fusion. J King Saud Univ - Comput Inf Sci 34(8):6217–6228. https://doi.org/10.1016/J.JKSUCI.2021.08.004. (PMID: 10.1016/J.JKSUCI.2021.08.004)
Patel V, Chaurasia V, Mahadeva R, Patole SP (2023) GARL-Net: graph based adaptive regularized learning deep network for breast cancer classification. IEEE Access 11:9095–9112. https://doi.org/10.1109/ACCESS.2023.3239671. (PMID: 10.1109/ACCESS.2023.3239671)
Mohammad Alizadeh S, Sadegh Helfroush M, Müller H (2023) A novel Siamese deep hashing model for histopathology image retrieval. Expert Syst Appl 225:120169. https://doi.org/10.1016/J.ESWA.2023.120169. (PMID: 10.1016/J.ESWA.2023.120169)
Zhu Y, Cao G, Yang Z, Lu X (2023) Learning relation-based features for fine-grained image retrieval. Pattern Recogn 140:109543. https://doi.org/10.1016/J.PATCOG.2023.109543. (PMID: 10.1016/J.PATCOG.2023.109543)
Zeng X, Zhang Y, Wang X, Chen K, Li D, Yang W (2020) Fine-grained image retrieval via piecewise cross entropy loss. Image Vis Comput 93:103820. https://doi.org/10.1016/J.IMAVIS.2019.10.006. (PMID: 10.1016/J.IMAVIS.2019.10.006)
X Zheng, R Ji, X Sun, Y Wu, F Huang, Y Yang (2018) Centralized ranking loss with weakly supervised localization for fine-grained object retrieval. IJCAI, pp 1226–1233.
Al-Shourbaji I, Kachare PH, Abualigah L, Abdelhag ME, Elnaim B, Anter AM, Gandomi AH (2023) A deep batch normalized convolution approach for improving COVID-19 detection from chest x-ray images. Pathogens 12(1). https://doi.org/10.3390/PATHOGENS12010017.
Pawar SD, Sharma KK, Sapate SG, Yadav GY, Alroobaea R, Alzahrani SM, Hedabou M (2022) Multichannel DenseNet architecture for classification of mammographic breast density for breast cancer detection. Front Public Health, 10. https://doi.org/10.3389/FPUBH.2022.885212.
Huang G, Liu Z, van der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, pp 2261–2269. https://doi.org/10.1109/CVPR.2017.243.
Li X, Shen X, Zhou Y, Wang X, Li TQ (2020) Classification of breast cancer histopathological images using interleaved DenseNet with SENet (IDSNet). PLoS ONE, 15(5). https://doi.org/10.1371/JOURNAL.PONE.0232127.
Spanhol FA, Oliveira LS, Petitjean C, Heutte L (2016) A dataset for breast cancer histopathological image classification. IEEE Trans Biomed Eng 63(7):1455–1462. https://doi.org/10.1109/TBME.2015.2496264. (PMID: 10.1109/TBME.2015.249626426540668)
Elreedy D, Atiya AF, Kamalov F (2023) A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning. Machine Learning 1–21. https://doi.org/10.1007/S10994-022-06296-4/TABLES/1.
Borkowski AA, Bui MM, Thomas LB, Wilson CP, DeLand LA, Mastorides SM (2019) Lung and colon cancer histopathological image dataset (LC25000).
Ribeiro MT, Singh S, Guestrin C (2016) “Why should i trust you?” Explaining the predictions of any classifier. Proc ACM SIGKDD Int Conf Knowl Discov Data Min 1135–1144. https://doi.org/10.1145/2939672.2939778.
Magesh PR, Myloth RD, Tom RJ (2020) An explainable machine learning model for early detection of Parkinson’s disease using LIME on DaTSCAN imagery. Comput Biol Med 126:104041. https://doi.org/10.1016/J.COMPBIOMED.2020.104041. (PMID: 10.1016/J.COMPBIOMED.2020.10404133074113)
Liang Y, Meng Z (2023) Brea-Net: an interpretable dual-attention network for imbalanced breast cancer classification. IEEE Access 11:100508–100517. https://doi.org/10.1109/ACCESS.2023.3314978. (PMID: 10.1109/ACCESS.2023.3314978)
Contributed Indexing: Keywords: DenseNet network; Fine-grained breast cancer classification; Hash neural model; Histopathological images
Entry Date(s): Date Created: 20250406 Date Completed: 20250901 Latest Revision: 20250901
Update Code: 20250901
DOI: 10.1007/s11517-025-03346-6
PMID: 40189728
Databáze: MEDLINE
Buďte první, kdo okomentuje tento záznam!
Nejprve se musíte přihlásit.