Comparative analysis of Ball Mapper and conventional Mapper in investigating air pollutants' behavior.
Uloženo v:
| Název: | Comparative analysis of Ball Mapper and conventional Mapper in investigating air pollutants' behavior. |
|---|---|
| Autoři: | Madukpe VN; School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia., Zulkepli NFS; School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. farihasyaqina@usm.my., Noorani MSM; Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia., Gobithaasan RU; School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. |
| Zdroj: | Environmental monitoring and assessment [Environ Monit Assess] 2025 Jan 06; Vol. 197 (2), pp. 136. Date of Electronic Publication: 2025 Jan 06. |
| Způsob vydávání: | Journal Article; Comparative Study |
| Jazyk: | English |
| Informace o časopise: | Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE |
| Imprint Name(s): | Publication: 1998- : Dordrecht : Springer Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981- |
| Výrazy ze slovníku MeSH: | Environmental Monitoring*/methods , Air Pollutants*/analysis , Air Pollution*/statistics & numerical data, Malaysia ; Particulate Matter/analysis ; Ozone/analysis ; Sulfur Dioxide/analysis |
| Abstrakt: | This study investigates the effectiveness and efficiency of two topological data analysis (TDA) techniques, the conventional Mapper (CM) and its variant version, the Ball Mapper (BM), in analyzing the behavior of six major air pollutants (NO (© 2025. The Author(s), under exclusive licence to Springer Nature Switzerland AG.) |
| Competing Interests: | Declarations. Ethics approval: This declaration is not applicable, as this study does not involve human images, human data, or the use of animals. Competing interests: The authors declare no competing interests. |
| References: | Almetwally, A. A., Bin-Jumah, M., & Allam, A. A. (2020). Ambient air pollution and its influence on human health and welfare: An overview. Environmental Science and Pollution Research, 27(20), 24815. https://doi.org/10.1007/s11356-020-09042-2. (PMID: 10.1007/s11356-020-09042-2) Aldana-Bobadilla, E., Lopez-Arevalo, I., Galeana-Zapien, H., & Crespo-Sanchez, M. (2018). A generalized clustering method based on validity indices and membership functions. IEEE Access, 6, 75912–75923. https://doi.org/10.1109/access.2018.2882408. (PMID: 10.1109/access.2018.2882408) Amézquita, E. J., Quigley, M. Y., Ophelders, T., Munch, E., & Chitwood, D. H. (2020). The shape of things to come: Topological data analysis and biology, from molecules to organisms. Developmental Dynamics, 249(7), 816–833. https://doi.org/10.1002/dvdy.175. (PMID: 10.1002/dvdy.175) Algazinov, E. K., Garshina, V. V., Stepantsov, V. A., & Desyatirikova, E. N. (2019). Experimental study reliability and functional stability of the social graph. Journal of Physics: Conference Series, 1202, 012009–012009. https://doi.org/10.1088/1742-6596/1202/1/012009. (PMID: 10.1088/1742-6596/1202/1/012009) Anderson J. R., Memic F., & Volic, I. (2020). Topological data analysis and UNICEF Multiple Indicator Cluster Surveys. ArXiv (Cornell University). https://doi.org/10.48550/arxiv.2012.12422. Ash’aari, Z. H., Aris, A. Z., EzaniAhmad Kamal, E. N. I., Jaafar, N., Jahaya, J. N., Manan, S. A., & Umar Saifuddin, M. F. (2020). Spatiotemporal variations and contributing factors of air pollutant concentrations in Malaysia during movement control order due to pandemic COVID-19. Aerosol and Air Quality Research, 20(10), 2047–2061. https://doi.org/10.4209/aaqr.2020.06.0334. (PMID: 10.4209/aaqr.2020.06.0334) Baidrulhisham, S. E., Noor, N. M., Hassan, Z., Sandu, A. V., Vizureanu, P., Ul-Saufie, A. Z., Zainol, M. R. R. M. A., Kadir, A. A., & Deák, G. (2022). Effects of weather and anthropogenic precursors on ground-level ozone concentrations in Malaysian cities. Atmosphere, 13(11), 1780. https://doi.org/10.3390/atmos13111780. (PMID: 10.3390/atmos13111780) Bassett, D. S., & Bullmore, E. T. (2016). Small-world brain networks revisited. The Neuroscientist, 23(5), 499–516. https://doi.org/10.1177/1073858416667720. (PMID: 10.1177/1073858416667720) Behera, R. R., Satapathy, D. R., Majhi, A., & Panda, C. R. (2021). Spatiotemporal variation of atmospheric pollution and its plausible sources in an industrial populated city Bay of Bengal Paradip. India Urban Climate, 37, 100860. https://doi.org/10.1016/j.uclim.2021.100860. (PMID: 10.1016/j.uclim.2021.100860) Barbarossa, S., & Sardellitti, S. (2020). Topological signal processing: Making sense of data building on multiway relations. IEEE Signal Processing Magazine, 37(6), 174–183. https://doi.org/10.1109/msp.2020.3014067. (PMID: 10.1109/msp.2020.3014067) Bogdan, P., Caetano-Anollés, G., Jolles, A., Kim, H., Morris, J., Murphy, C. A., Royer, C., Snell, E. H., Steinbrenner, A., & Strausfeld, N. (2021). Biological networks across scales—The theoretical and empirical foundations for time-varying complex networks that connect structure and function across levels of biological organization. Integrative and Comparative Biology, 61(6), 1991–2010. https://doi.org/10.1093/icb/icab069. (PMID: 10.1093/icb/icab069) Bui, Q.-T., Vo, B., Do, H.-A.N., Hung, N. Q. V., & Snasel, V. (2020). F-mapper: A fuzzy mapper clustering algorithm. Knowledge-Based Systems, 189, 105107. https://doi.org/10.1016/j.knosys.2019.105107. (PMID: 10.1016/j.knosys.2019.105107) Bukkuri A., Andor N., & Darcy I. K. (2021). Applications of topological data analysis in oncology. Frontiers in Artificial Intelligence. 4. https://doi.org/10.3389/frai.2021.659037. Caputi, L., Pidnebesna, A., & Hlinka, J. (2021). Promises and pitfalls of topological data analysis for brain connectivity analysis. NeuroImage, 238, 118245. (PMID: 10.1016/j.neuroimage.2021.118245) Chang, J. H. W., Chee F. P., Kong, S. S. K., & Sentian, J. (2018). Variability of the PM10 concentration in the urban atmosphere of Sabah and its responses to diurnal and weekly changes of CO, NO2, SO2 and Ozone. Asian Journal of Atmospheric Environment, 12(2), 109–126. https://doi.org/10.5572/ajae.2018.12.2.109. Chen, Y., & Volić, I. (2021). Topological data analysis model for the spread of the coronavirus. PLoS ONE, 16(8), e0255584. https://doi.org/10.1371/journal.pone.0255584. (PMID: 10.1371/journal.pone.0255584) Chen, M., Wang, P., Chen, Q., Wu, J., & Chen, X. (2015). A clustering algorithm for sample data based on environmental pollution characteristics. Atmospheric Environment, 107, 194–203. https://doi.org/10.1016/j.atmosenv.2015.02.042. (PMID: 10.1016/j.atmosenv.2015.02.042) Derwae, H., Nijs, M., Geysels, A., Waelkens, E., & De Moor, B. (2023). Spatiochemical characterization of the pancreas using mass spectrometry imaging and topological data analysis. Analytical Chemistry, 95(28), 10550–10556. https://doi.org/10.1021/acs.analchem.2c05606. (PMID: 10.1021/acs.analchem.2c05606) Dłotko P., Qiu W., & Rudkin S. T. (2021). Financial ratios and stock returns reappraised through a topological data analysis lens. The European Journal of Finance. 1–25. https://doi.org/10.1080/1351847x.2021.2009892. Dłotko P. (2019). Ball Mapper: A shape summary for topological data analysis. ArXiv (Cornell University). https://doi.org/10.48550/arxiv.1901.07410. Dlotko, P., & Rudkin, S. (2020). Covid-19 clinical data analysis using Ball Mapper. MedRxiv (Cold Spring Harbor Laboratory). https://doi.org/10.1101/2020.04.10.20061374. (PMID: 10.1101/2020.04.10.20061374) Dłotko P., Qiu W., & Rudkin S. (2022). Topological data analysis Ball Mapper for finance. ArXiv (Cornell University). https://doi.org/10.48550/arxiv.2206.03622. DOE (2024) Malaysia Environmental Quality Report 2020. https://enviro2.doe.gov . my/ekmc/. Accessed 20 April 2024. Estrada, E. (2021). The many facets of the Estrada indices of graphs and networks. SeMA Journal, 79(1), 57–125. https://doi.org/10.1007/s40324-021-00275-w. (PMID: 10.1007/s40324-021-00275-w) Estrada, E., & Higham, D. J. (2010). Network properties revealed through matrix functions. SIAM Review, 52(4), 696–714. https://doi.org/10.1137/090761070. (PMID: 10.1137/090761070) Escolar, E., Hiraoka, Y., Igami, M., & Ozcan, Y. (2020). Mapping firms’ locations in technological space: A topological analysis of patent statistics. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3445703. (PMID: 10.2139/ssrn.3445703) Farahiyah W., Zildawarni Irwan, Mohd Rabani Yaafar, & Rahman A. (2022). Lockdown effect on carbon monoxide concentration over Malaysia and Indonesia. Scientific Review Engineering and Environmental Sciences (SREES). 31 2 124–134. https://doi.org/10.22630/srees.2238. Geniesse C., Olaf Sporns, Petri G., & Manish Saggar. (2019) Generating dynamical neuroimaging spatiotemporal representations (DyNeuSR) using topological data analysis. Network Neuroscience 3 763–778. Giannis Moutsinas, & Guo, W. (2020). Node-Level Resilience Loss in Dynamic Complex Networks. 10(1). https://doi.org/10.1038/s41598-020-60501-9. Goel, A., Pasricha, P., & Mehra, A. (2020). Topological Data Analysis in Investment Decisions. Expert Systems with Applications, 147, 113222–113222. https://doi.org/10.1016/j.eswa.2020.113222. (PMID: 10.1016/j.eswa.2020.113222) Gobithaasan, R. U., Hasan, A. Z., Selvarajh, K. D., Wong, K., Mamat, S., Ali, M. Z. M., Miura, K. T., Dotko, P. (2022). Clustering selected terengganu’s rainfall stations based on persistent homology. Thai Journal of Mathematics, 197–211. https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/1300. Govender, P., & Sivakumar, V. (2020). Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019). Atmospheric Pollution Research, 11(1), 40–56. https://doi.org/10.1016/j.apr.2019.09.009. (PMID: 10.1016/j.apr.2019.09.009) Guo, W., & Banerjee, A. G. (2017). Identification of key features using topological data analysis for accurate prediction of manufacturing system outputs. Journal of Manufacturing Systems, 43, 225–234. https://doi.org/10.1016/j.jmsy.2017.02.015. (PMID: 10.1016/j.jmsy.2017.02.015) Gurnari, P. (2022). pyBallMapper: Python implementation of the Ball Mapper algorithm [Software]. GitHub. https://github.com/Gurnari/pyBallMapper. Hadeed, S. J., O’Rourke, M. K., Burgess, J. L., Harris, R. B., & Canales, R. A. (2020). Imputation methods for addressing missing data in short-term monitoring of air pollutants. Science of the Total Environment, 730, 139140. https://doi.org/10.1016/j.scitotenv.2020.139140. (PMID: 10.1016/j.scitotenv.2020.139140) Hong Y., Xu X., Liao D., Zheng R., Ji X., Chen Y., Xu L., Li M., Wang H., Xiao H., Choi S.-D., & Chen J. (2021). Source apportionment of PM2.5 and sulfate formation during the COVID-19 lockdown in a coastal city of southeast China. Environmental Pollution, 286, 117577. https://doi.org/10.1016/j.envpol.2021.117577. Huning, L. S., & AghaKouchak, A. (2020). Approaching 80 years of snow water equivalent information by merging different data streams. Scientific Data. 7(1). https://doi.org/10.1038/s41597-020-00649-1. Ibe, F. C., Opara, A. I., Duru, C. E., Obinna, I. B., & Enedoh, M. C. (2020). Statistical analysis of atmospheric pollutant concentrations in parts of Imo State. Southeastern Nigeria. Scientific African, 7, e00237. https://doi.org/10.1016/j.sciaf.2019.e00237. (PMID: 10.1016/j.sciaf.2019.e00237) Jalili, M., Mazidi, F., Ehrampoosh, M. H., Badeenezhad, A., Ebrahimi, V., & Abbasi, F. (2020). Relationship of air pollution and daily hospital admissions due to respiratory disease: A time series analysis. Journal of Environmental Health and Sustainable Development. https://doi.org/10.18502/jehsd.v5i1.2479. Kate, R. J. (2015). Using dynamic time warping distances as features for improved time series classification. Data Mining and Knowledge Discovery, 30(2), 283–312. https://doi.org/10.1007/s10618-015-0418-x. (PMID: 10.1007/s10618-015-0418-x) Karanikola, A., Liapis, C. M., & Kotsiantis, S. (2021). Investigating cluster validation metrics for optimal number of clusters determination. Intelligent Decision Technologies, 15(4), 809–824. https://doi.org/10.3233/idt-210187. (PMID: 10.3233/idt-210187) Kazikova, A., Pluhacek, M., & Senkerik, R. (2020). Why tuning the control parameters of metaheuristic algorithms is so important for fair comparison? MENDEL, 26(2), 9–16. https://doi.org/10.13164/mendel.2020.2.009. Khaniabadi, Y. O., Daryanoosh, M., Sicard, P., Takdastan, A., Hopke, P. K., Esmaeili, S., De Marco, A., & Rashidi, R. (2018). Chronic obstructive pulmonary diseases related to outdoor PM10, O3, SO2, and NO2 in a heavily polluted megacity of Iran. Environmental Science and Pollution Research, 25(18), 17726–17734. https://doi.org/10.1007/s11356-018-1902-9. (PMID: 10.1007/s11356-018-1902-9) Kovtun N., & Fataliieva A. (2020). New trends in evidence-based statistics: Data imputation problems. Statistika Ukraïni, 87(4), 4–13. https://doi.org/10.31767/su.4(87)2019.04.01. Kumar, U., Legendre, C. P., Zhao, L., & Chao, B. F. (2022). Dynamic time warping as an alternative to windowed cross-correlation in seismological applications. Seismological Research Letters, 93(3), 1909–1921. https://doi.org/10.1785/0220210288. (PMID: 10.1785/0220210288) Khan, M. F., Hamid, A. H., Rahim, H. A., Maulud, K. N. A., Latif, M. T., Nadzir, M. S. M., Sahani, M., Qin, K., Kumar, P., Varkkey, H., Faruque, M. R. I., Guan, N. C., Ahmadi, S. P., & Yusoff, S. (2020). El Niño driven haze over the Southern Malaysian Peninsula and Borneo. Science of the Total Environment, 730, 139091. https://doi.org/10.1016/j.scitotenv.2020.139091. (PMID: 10.1016/j.scitotenv.2020.139091) Latif, M. T., Dominick, D., Hawari, N. S. S. L., Mohtar, A. A. A., & Othman, M. (2021). The concentration of major air pollutants during the movement control order due to the COVID-19 pandemic in the Klang Valley. Malaysia. Sustainable Cities and Society, 66, 102660. https://doi.org/10.1016/j.scs.2020.10266. (PMID: 10.1016/j.scs.2020.10266) Ma C., Song J., Ran M., Wan Z., Guo Y., & Gao M. (2024). Machine learning‐driven spatiotemporal analysis of ozone exposure and health risks in China. Journal of Geophysical Research Atmospheres 129(20). https://doi.org/10.1029/2024jd041593. Ma F., Wang X., & Wang P. (2020). An ensemble of random graphs with identical degree distribution. Chaos, 30(1). https://doi.org/10.1063/1.5105354. Maarten Van Steen. (2010). Graph theory and complex networks: An introduction.1st ed., vol. 1. Amsterdam: Maarten van Steen, 2010 pp. 2–33. Manga, E., & Awang, N. (2018). Bayesian autoregressive spatiotemporal model of PM10 concentrations across Peninsular Malaysia. Stochastic Environmental Research and Risk Assessment, 32(12), 3409–3419. https://doi.org/10.1007/s00477-018-1574-5. Manisalidis I., Stavropoulou E., Stavropoulos A., & Bezirtzoglou E. (2020). Environmental and health impacts of air pollution: A review. Frontiers in Public Health. 8(14) 1–13. NCBI. https://doi.org/10.3389/fpubh.2020.00014. Majumdar, S., & Laha, A. K. (2020). Clustering and classification of time series using topological data analysis with applications to finance. Expert Systems with Applications, 162, 113868. https://doi.org/10.1016/j.eswa.2020.113868. (PMID: 10.1016/j.eswa.2020.113868) Mohtar A. A. A., Latif M. T., Baharudin N. H., Ahamad F., Chung J. X., Othman M., & Juneng L. (2018). Variation of major air pollutants in different seasonal conditions in an urban environment in Malaysia. Geoscience Letters, 5(1). https://doi.org/10.1186/s40562-018-0122-y. Muszynski, G., Kashinath, K., Kurlin, V., & Wehner, M. (2019). Topological data analysis and machine learning for recognizing atmospheric river patterns in large climate datasets. Geoscientific Model Development, 12(2), 613–628. https://doi.org/10.5194/gmd-12-613-2019. (PMID: 10.5194/gmd-12-613-2019) Musa S. M. S. S., Noorani M. S. M., Razak F. A., Ismail M., Alias M. A., & Hussain S. I. (2021). Using persistent homology as preprocessing of early warning signals for critical transition in flood. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-86739-5. Munch, E. (2017). A user’s guide to topological data analysis. Journal of Learning Analytics. 4(2) 47–61. https://doi.org/10.18608/jla.2017.42.6. Needham, M., & Hodler, A. E. (2019). Graph algorithms: practical examples in Apache Spark and Neo4j. O'Reilly Media, Sebastopol, CA, USA. Nicolau, M., Levine, A. J., & Carlsson. (2011). Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. PNAS. 17, 7265–7270. https://doi.org/10.1073/pnas.1102826108. Nielson, J. L., Paquette, J., Liu, A. W., Guandique, C. F., Tovar, C. A., Inoue, T., Irvine, K.-A., Gensel, J. C., Kloke, J., Petrossian, T. C., Lum, P. Y., Carlsson, G. E., Manley, G. T., Young, W., Beattie, M. S., Bresnahan, J. C., & Ferguson, A. R. (2015). Topological data analysis for discovery in preclinical spinal cord injury and traumatic brain injury. Nature Communications, 6(1), 8581. https://doi.org/10.1038/ncomms9581. (PMID: 10.1038/ncomms9581) Ofori-Boateng, D., Lee, H., Gorski, K. M., Garay, M. J., & Gel, Y. R. (2021). Application of topological data analysis to multi-resolution matching of aerosol optical depth maps. Frontiers in Environmental Science. 9. https://doi.org/10.3389/fenvs.2021.684716. Othman, M., Latif, M. T., Jamhari, A. A., Abd Hamid, H. H., Uning, R., Khan, M. F., Mohd Nadzir, M. S., Sahani, M., Abdul Wahab, M. I., & Chan, K. M. (2021). Spatial distribution of fine and coarse particulate matter during a southwest monsoon in Peninsular Malaysia. Chemosphere, 262, 127767. https://doi.org/10.1016/j.chemosphere.2020.127767. (PMID: 10.1016/j.chemosphere.2020.127767) Peng, Y., Yan, T., Feng, J., Emma, W., & Guo, T. (2021). The influencing factors of SO42- and NO3- in PM10 in Jinhua, China. International Journal of Advanced Research. 9(4) 935–945. https://doi.org/10.21474/ijar01/12786. Ren, X., Ahmed, I., & Liu, R. (2023). Study of topological behavior of some computer related graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 117, 03-14. https://doi.org/10.61091/jcmcc117-01. Sicard, P., Khaniabadi, Y. O., Perez, S., Gualtieri, M., & De Marco, A. (2019). Effect of O3, PM10, and PM2.5 on cardiovascular and respiratory diseases in cities of France, Iran, and Italy. Environmental Science and Pollution Research, 26(31), 32645–32665. https://doi.org/10.1007/s11356-019-06445-8. Singh, G., Facundo Mémoli, & Carlsson, G. (2007). Topological methods for the analysis of high dimensional data sets and 3D object recognition. 91–100. https://doi.org/10.2312/spbg/spbg07/091-100. Shin, J., Choi, J., & Kim, K. J. (2019). Association between long-term exposure of ambient air pollutants and cardiometabolic diseases: A 2012 Korean Community Health Survey. Nutrition, Metabolism and Cardiovascular Diseases, 29(2), 144–151. https://doi.org/10.1016/j.numecd.2018.09.008. (PMID: 10.1016/j.numecd.2018.09.008) Song, J., & Stettler, M. E. (2021). A novel multi-pollutant space-time learning network for air pollution inference. The Science of the Total Environment, 811, 152254. https://doi.org/10.1016/j.scitotenv.2021.152254. (PMID: 10.1016/j.scitotenv.2021.152254) Song, J., Han, K., & Stettler, M. E. J. (2020). DEEP-MAPS: Machine-learning-based mobile air pollution sensing. IEEE Internet of Things Journal, 8(9), 7649–7660. https://doi.org/10.1109/jiot.2020.3041047. (PMID: 10.1109/jiot.2020.3041047) Suris, F. N. A., Bakar, M. A. A., Ariff, N. M., Mohd Nadzir, M. S., & Ibrahim, K. (2022). Malaysia PM10 air quality time series clustering based on dynamic time warping. Atmosphere, 13(4), 503. https://doi.org/10.3390/atmos13040503. (PMID: 10.3390/atmos13040503) Vasseur, S. P., & Aznarte, J. L. (2021). Comparing quantile regression methods for probabilistic forecasting of NO2 pollution levels. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-90063-3. Vîrghileanu, M., Săvulescu, I., Mihai, B.-A., Nistor, C., & Dobre, R. (2020). Nitrogen Dioxide (NO2) Pollution monitoring with Sentinel-5P satellite imagery over Europe during the coronavirus pandemic outbreak. Remote Sensing, 12(21), 3575. https://doi.org/10.3390/rs12213575. (PMID: 10.3390/rs12213575) van Veen, H., Saul, N., Eargle, D., & Mangham, S. (2019). Kepler Mapper: A flexible Python implementation of the Mapper algorithm. Journal of Open Source Software, 4(42), 1315. https://doi.org/10.21105/joss.01315. Weiss, C. J. (2022). Visualizing protein big data using Python and Jupyter notebooks. Biochemistry and Molecular Biology Education. https://doi.org/10.1002/bmb.21621. (PMID: 10.1002/bmb.21621) WHO. (2021). WHO global air quality guidelines: particulate matter (PM2. 5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. https://www.who.int/publications/i/item/9789240034228/ . Accessed 24 Apr 2024. Yang, D., Zhang, S., Niu, T., Wang, Y., Xu, H., Zhang, K. M., & Wu, Y. (2019). High-resolution mapping of vehicle emissions of atmospheric pollutants based on large-scale, real-world traffic datasets. Atmospheric Chemistry and Physics, 19(13), 8831–8843. https://doi.org/10.5194/acp-19-8831-2019. (PMID: 10.5194/acp-19-8831-2019) Yang, H., Yan, C., Li, M., Zhao, L., Long, Z., Fan, Y., Zhang, Z., Chen, R., Huang, Y., Lu, C., Zhang, J., Tang, J., Liu, H., Liu, M., Guo, W., Yang, L., & Zhang, X. (2021). Short-term effects of air pollutants on hospital admissions for respiratory diseases among children: A multi-city time-series study in China. International Journal of Hygiene and Environmental Health, 231, 113638. https://doi.org/10.1016/j.ijheh.2020.113638. (PMID: 10.1016/j.ijheh.2020.113638) Zhang, L., & Yang, G. (2022). Cluster analysis of PM2.5 pollution in China using the frequent itemset clustering approach. Environmental Research, 204, 112009. https://doi.org/10.1016/j.envres.2021.112009. Zhao, P., Qin, K., Ye, X., Wang, Y., & Chen, Y. (2016). A trajectory clustering approach based on decision graph and data field for detecting hotspots. International Journal of Geographical Information Science, 1–27. https://doi.org/10.1080/13658816.2016.1213845. Zulkepli, N. F. S., Madukpe, V. N., Noorani, M. S. M., Bakar, M. A. A., Gobithaasan, R. U., & Jie, O. C. (2024). Topological clustering in investigating spatial patterns of particulate matter between air quality monitoring stations in Malaysia. Air Quality Atmosphere & Health. https://doi.org/10.1007/s11869-024-01596-1. (PMID: 10.1007/s11869-024-01596-1) Zulkepli, N. F. S., Noorani, M. S. M., Razak, F. A., Ismail, M., & Alias, M. A. (2020). Cluster analysis of haze episodes based on topological features. Sustainability, 12(10), 3985. https://doi.org/10.3390/su12103985. (PMID: 10.3390/su12103985) |
| Contributed Indexing: | Keywords: Air pollution; Ball Mapper algorithm; Hierarchical agglomerative clustering algorithm; Mapper algorithm; Topological data analysis; Topological graph |
| Substance Nomenclature: | 0 (Air Pollutants) 0 (Particulate Matter) 66H7ZZK23N (Ozone) 0UZA3422Q4 (Sulfur Dioxide) |
| Entry Date(s): | Date Created: 20250106 Date Completed: 20250106 Latest Revision: 20250211 |
| Update Code: | 20250211 |
| DOI: | 10.1007/s10661-024-13477-2 |
| PMID: | 39760901 |
| Databáze: | MEDLINE |
| Abstrakt: | This study investigates the effectiveness and efficiency of two topological data analysis (TDA) techniques, the conventional Mapper (CM) and its variant version, the Ball Mapper (BM), in analyzing the behavior of six major air pollutants (NO <subscript>2</subscript> , PM <subscript>10</subscript> , PM <subscript>2.5</subscript> , O <subscript>3</subscript> , CO, and SO <subscript>2</subscript> ) across 60 air quality monitoring stations in Malaysia. Topological graphs produced by CM and BM reveal redundant monitoring stations and geographical relationships corresponding to air pollutant behavior, providing better visualization than traditional hierarchical clustering. Additionally, a comparative analysis of topological graph structures was conducted using node degree distribution, topological graph indices, and Dynamic Time Warping (DTW) to evaluate the sensitivity and performance of these TDA techniques. Both approaches yielded valuable insights in representing the air quality monitoring stations network; however, the complexity of CM, which requires multiple parameters, poses a challenge in graph construction. In contrast, the simplicity of BM, requiring only a single parameter, is preferable for representing air pollutant behavior. The findings suggest an alternative approach for assessing and identifying redundancies in air quality monitoring stations, which could contribute to improved air quality monitoring management and more effective regulatory policies.<br /> (© 2025. The Author(s), under exclusive licence to Springer Nature Switzerland AG.) |
|---|---|
| ISSN: | 1573-2959 |
| DOI: | 10.1007/s10661-024-13477-2 |
Full Text Finder
Nájsť tento článok vo Web of Science