High-throughput peptide array analysis and computational techniques for serological profiling of flavivirus infections: Implications for diagnostics and vaccine development.
Uloženo v:
| Název: | High-throughput peptide array analysis and computational techniques for serological profiling of flavivirus infections: Implications for diagnostics and vaccine development. |
|---|---|
| Autoři: | Bombaci M; Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milano, Italy., Fassi EMA; Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy., Gobbini A; Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milano, Italy., Mileto D; Laboratory of Clinical Microbiology, Virology and Bioemergencies, ASST Fatebenefratelli Sacco - L. Sacco Hospital, Milano, Italy., Cassaniti I; Department of Clinical, Surgical, Diagnostics and Pediatric Sciences, University of Pavia, Pavia, Italy.; Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy., Pesce E; Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milano, Italy.; Department of Clinical Sciences and Community Health, Department of Excellence 2023-2027, University of Milano, Milano, Italy., Casali E; Department of Chemistry, University of Pavia, Pavia, Italy., Mancon A; Laboratory of Clinical Microbiology, Virology and Bioemergencies, ASST Fatebenefratelli Sacco - L. Sacco Hospital, Milano, Italy., Sammartino J; Department of Clinical, Surgical, Diagnostics and Pediatric Sciences, University of Pavia, Pavia, Italy., Ferrari A; Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy., Percivalle E; Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy., Grande R; Laboratory of Clinical Microbiology, Virology and Bioemergencies, ASST Fatebenefratelli Sacco - L. Sacco Hospital, Milano, Italy., Marchisio E; DIA.PRO Diagnostic Bioprobes Srl, Sesto San Giovanni, Michigan, USA., Gismondo MR; Laboratory of Clinical Microbiology, Virology and Bioemergencies, ASST Fatebenefratelli Sacco - L. Sacco Hospital, Milano, Italy.; Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milano, Italy., Abrignani S; Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milano, Italy.; Department of Clinical Sciences and Community Health, Department of Excellence 2023-2027, University of Milano, Milano, Italy., Baldanti F; Department of Clinical, Surgical, Diagnostics and Pediatric Sciences, University of Pavia, Pavia, Italy.; Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy., Colombo G; Department of Chemistry, University of Pavia, Pavia, Italy., Grifantini R; Istituto Nazionale Genetica Molecolare, Padiglione Romeo ed Enrica Invernizzi, Milano, Italy. |
| Zdroj: | Journal of medical virology [J Med Virol] 2024 Sep; Vol. 96 (9), pp. e29923. |
| Způsob vydávání: | Journal Article |
| Jazyk: | English |
| Informace o časopise: | Publisher: Wiley-Liss Country of Publication: United States NLM ID: 7705876 Publication Model: Print Cited Medium: Internet ISSN: 1096-9071 (Electronic) Linking ISSN: 01466615 NLM ISO Abbreviation: J Med Virol Subsets: MEDLINE |
| Imprint Name(s): | Publication: New York Ny : Wiley-Liss Original Publication: New York, Liss. |
| Výrazy ze slovníku MeSH: | Flavivirus Infections*/diagnosis , Flavivirus Infections*/immunology , Flavivirus*/immunology , Protein Array Analysis*/methods, Humans ; Peptides/immunology ; Vaccine Development ; Computational Biology/methods ; Dengue/diagnosis ; Dengue/immunology ; Dengue/blood ; Dengue Virus/immunology ; Dengue Virus/genetics ; High-Throughput Screening Assays/methods ; Serologic Tests/methods ; Biomarkers/blood ; Viral Proteins/immunology ; Adult ; Antibodies, Viral/blood ; Middle Aged ; Male ; Female ; Zika Virus/immunology |
| Abstrakt: | Arthropod-borne viruses, such as dengue virus (DENV), pose significant global health threats, with DENV alone infecting around 400 million people annually and causing outbreaks beyond endemic regions. This study aimed to enhance serological diagnosis and discover new drugs by identifying immunogenic protein regions of DENV. Utilizing a comprehensive approach, the study focused on peptides capable of distinguishing DENV from other flavivirus infections through serological analyses. Over 200 patients with confirmed arbovirus infection were profiled using high-density pan flavivirus peptide arrays comprising 6253 peptides and the computational method matrix of local coupling energy (MLCE). Twenty-four peptides from nonstructural and structural viral proteins were identified as specifically recognized by individuals with DENV infection. Six peptides were confirmed to distinguish DENV from Zika virus (ZIKV), West Nile virus (WNV), Yellow Fever virus (YFV), Usutu virus (USUV), and Chikungunya virus (CHIKV) infections, as well as healthy controls. Moreover, the combination of two immunogenic peptides emerged as a potential serum biomarker for DENV infection. These peptides, mapping to highly accessible regions on protein structures, show promise for diagnostic and prophylactic strategies against flavivirus infections. The described methodology holds broader applicability in the serodiagnosis of infectious diseases. (© 2024 Wiley Periodicals LLC.) |
| References: | Collins MH, Metz SW. Progress and works in progress: update on flavivirus vaccine development. Clin Ther. 2017;39(8):1519‐1536. doi:10.1016/j.clinthera.2017.07.001. Eisen L, Moore CG. Aedes(Stegomyia)aegyptiin the continental United States: a vector at the cool margin of its geographic range. J Med Entomol. 2013;50(3):467‐478. doi:10.1603/me12245. Depaquit J, Grandadam M, Fouque F, Andry P, Peyrefitte C. Arthropod‐borne viruses transmitted by phlebotomine sandflies in Europe: a review. Euro Surveill. 2010;15(10):pii=19507. doi:10.2807/ese.15.10.19507-en. Rodenhuis‐Zybert IA, Wilschut J, Smit JM. Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci. 2010;67(16):2773‐2786. doi:10.1007/s00018-010-0357-z. Rice CM, Lenches EM, Eddy SR, Shin SJ, Sheets RL, Strauss JH. Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science. (80‐) 1985;229(4715):726‐733. doi:10.1126/science.4023707. WHO. Dengue, W. H. O. Guidelines for Diagnosis, Treatment, Prevention and Control. 2009, 2012. Lim JK, Chanthavanich P, Limkittikul K, et al. Clinical and epidemiologic characteristics associated with dengue fever in 2011–2016 in bang phae district, ratchaburi province, Thailand. PLoS Neglected Trop Dis. 2021;15(6):e0009513. doi:10.1371/journal.pntd.0009513. Vannice KS, Durbin A, Hombach J. Status of vaccine research and development of vaccines for dengue. Vaccine. 2016;34(26):2934‐2938. doi:10.1016/j.vaccine.2015.12.073. Thomas SJ. Is new dengue vaccine efficacy data a relief or cause for concern? NPJ Vaccines. 2023;8(1):55. doi:10.1038/s41541-023-00658-2. Kyle JL, Harris E. Global spread and persistence of dengue. Annu Rev Microbiol. 2008;62(1):71‐92. doi:10.1146/annurev.micro.62.081307.163005. Kraemer MUG, Sinka ME, Duda KA, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. 2015. doi:10.7554/elife.08347.013. Vista FES, Tantengco OAG, Dispo MD, et al. Trends in ELISA‐based flavivirus IgG serosurveys: a systematic review. Trop Med Infect Dis. 2023;8(4):224. doi:10.3390/tropicalmed8040224. Lai S‐C, Huang Y‐Y, Wey J‐J, et al. Development of novel dengue NS1 multiplex lateral flow immunoassay to differentiate serotypes in serum of acute phase patients and infected mosquitoes. Front Immunol. 2022;13:852452. doi:10.3389/fimmu.2022.852452. Matsunaga K, Kimoto M, Lim VW, et al. Competitive ELISA for a serologic test to detect dengue serotype‐specific anti‐NS1 IgGs using high‐affinity UB‐DNA aptamers. 2021. doi:10.21203/rs.3.rs-428449/v1. Vogels CBF, Rückert C, Cavany SM, Perkins TA, Ebel GD, Grubaugh ND. Arbovirus coinfection and co‐transmission: a neglected public health concern? PLoS Biol. 2019;17(1):e3000130. doi:10.1371/journal.pbio.3000130. Ansari H, Raghava GP. Identification of conformational B‐cell epitopes in an antigen from its primary sequence. Immunome Res. 2010;6:6. doi:10.1186/1745-7580-6-6. Dalkas GA, Rooman M. SEPIa, a knowledge‐driven algorithm for predicting conformational B‐cell epitopes from the amino acid sequence. BMC Bioinformatics. 2017;18(1):95. doi:10.1186/s12859-017-1528-9. Fiorucci S, Zacharias M. Prediction of protein‐protein interaction sites using electrostatic desolvation profiles. Biophys J. 2010;98(9):1921‐1930. doi:10.1016/j.bpj.2009.12.4332. Lefranc M‐P, Giudicelli V, Kaas Q, et al. IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res. 2005;33(Database issue):D593‐D597. doi:10.1093/nar/gki065. Ponomarenko J, Bui H‐H, Li W, et al. ElliPro: a new structure‐based tool for the prediction of antibody epitopes. BMC Bioinformatics. 2008;9:514. doi:10.1186/1471-2105-9-514. Sun J, Wu D, Xu T, et al. SEPPA: a computational server for spatial epitope prediction of protein antigens. Nucleic Acids Res. 2009;37(Web Server issue):W612‐W616. doi:10.1093/nar/gkp417. Toseland CP, Clayton DJ, McSparron H, et al. AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data. Immunome Res. 2005;1(1):4. doi:10.1186/1745-7580-1-4. Zhang L, Chen Y, Wong H‐S, Zhou S, Mamitsuka H, Zhu S. TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA‐DR molecules. PLoS One. 2012;7(2):e30483. doi:10.1371/journal.pone.0030483. Scarabelli G, Morra G, Colombo G. Predicting interaction sites from the energetics of isolated proteins: a new approach to epitope mapping. Biophys J. 2010;98(9):1966‐1975. doi:10.1016/j.bpj.2010.01.014. Cretich M, Gori A, D'annessa I, Chiari M, Colombo G. Peptides for infectious diseases: from probe design to diagnostic microarrays. Antibodies (Basel, Switzerland). 2019;8(1):23. doi:10.3390/antib8010023. Soriani M, Petit P, Grifantini R, et al. Exploiting antigenic diversity for vaccine design. J Biol Chem. 2010;285(39):30126‐30138. doi:10.1074/jbc.M110.118513. Cassaniti I, Percivalle E, Adzasehoun KMG, Comolli G, Baldanti F. Dengue virus‐specific humoral and T cellular immune response in Italian residents and travelers returning from endemic areas. Vector Borne Zoonotic Dis. 2020;20(4):295‐302. doi:10.1089/vbz.2019.2515. Linke S, Ellerbrok H, Niedrig M, Nitsche A, Pauli G. Detection of west Nile virus lineages 1 and 2 by real‐time PCR. J Virol Methods. 2007;146(1‐2):355‐358. doi:10.1016/j.jviromet.2007.05.021. Huhtamo E, Hasu E, Uzcátegui NY, et al. Early diagnosis of dengue in travelers: comparison of a novel real‐time RT‐PCR, NS1 antigen detection and serology. J Clin Virol. 2010;47(1):49‐53. doi:10.1016/j.jcv.2009.11.001. Scaramozzino N, Crance JM, Jouan A, DeBriel DA, Stoll F, Garin D. Comparison of flavivirus universal primer pairs and development of a rapid, highly sensitive heminested reverse Transcription‐PCR assay for detection of flaviviruses targeted to a conserved region of the NS5 gene sequences. J Clin Microbiol. 2001;39(5):1922‐1927. doi:10.1128/jcm.39.5.1922-1927.2001. Case DA, Amber 20162016. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79(2):926‐935. doi:10.1063/1.445869. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 2015;11(8):3696‐3713. doi:10.1021/acs.jctc.5b00255. Joung IS, Cheatham 3rd TE. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B. 2008;112(30):9020‐9041. doi:10.1021/jp8001614. Li P, Song LF, Merz KM. Parameterization of highly charged metal ions using the 12‐6‐4 LJ‐type nonbonded model in explicit water. J Phys Chem B. 2015;119(3):883‐895. doi:10.1021/jp505875v. Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren WF, Mark AE. Peptide folding: when simulation meets experiment. Angew Chem Int Ed. 1999;38(1/2):236‐240. doi:10.1002/(sici)1521-3773(19990115)38:1/2<236::aid-anie236>3.3.co;2-d. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26(16):1701‐1718. doi:10.1002/jcc.20291. Capelli R, Matterazzo E, Amabili M, et al. Designing Probes for Immunodiagnostics: Structural Insights into an Epitope Targeting Burkholderia Infections. doi:10.1021/acsinfecdis.7b00080.s001. Bergamaschi G, Fassi EMA, Romanato A, et al. Computational analysis of dengue virus envelope protein (E) reveals an epitope with flavivirus immunodiagnostic potential in peptide microarrays. Int J Mol Sci. 2019;20(8):1921. doi:10.3390/ijms20081921. Peri C, Gori A, Gagni P, et al. Evolving serodiagnostics by rationally designed peptide arrays: the Burkholderia paradigm in cystic fibrosis. Sci Rep. 2016;6:32873. doi:10.1038/srep32873. Percivalle E, Cassaniti I, Sarasini A, et al West Nile or usutu virus? A three‐year follow‐up asymptomatic blood donors. Viruses. 2020;12:157. doi:10.3390/v12020157. Mazzara S, Rossi RL, Grifantini R, Donizetti S, Abrignani S, Bombaci M. CombiROC: an interactive web tool for selecting accurate marker combinations of omics data. Sci Rep. 2017;7:45477. doi:10.1038/srep45477. Bombaci M, Rossi RL. Computation and selection of optimal biomarker combinations by integrative ROC analysis using CombiROC. In: Brun, V., Couté, Y, eds. Proteomics for Biomarker Discovery: Methods in Molecular Biolog. Vol 1959. Humana Press. doi:10.1007/978-1-4939-9164-8_16. Ferrari I, Mazzara S, Crosti M, et al. Combiroc: when ‘less is more’ in bulk and single cell marker signatures. bioRxiv. 2023. doi:10.1101/2022.01.17.476603. Peri C, Gagni P, Combi F, et al. Rational epitope design for protein targeting. ACS Chem Biol. 2012;8(2):397‐404. doi:10.1021/cb300487u. De Benedetti S, Di Pisa F, Fassi EMA, et al. Structure, immunoreactivity, and in silico epitope determination of SmSPI S. mansoni serpin for immunodiagnostic application. Vaccines. 2021;9(4):322. doi:10.3390/vaccines9040322. Falconi‐Agapito F, Kerkhof K, Merino X, et al. Dynamics of the magnitude, breadth and depth of the antibody response at epitope level following dengue infection. Front Immunol. 2021;12(July):686691. doi:10.3389/fimmu.2021.686691. Pitcher TJ, Sarathy VV, Matsui K, Gromowski GD, Huang CY‐H, Barrett ADT. Functional analysis of dengue virus (DENV) type 2 envelope protein domain 3 type‐specific and DENV complex‐reactive critical epitope residues. J Gen Virol. 2015;96(Pt 2):288‐293. doi:10.1099/vir.0.070813-0. Gromowski GD, Barrett ADT. Characterization of an antigenic site that contains a dominant, type‐specific neutralization determinant on the envelope protein domain III (ED3) of dengue 2 virus. Virology. 2007;366(2):349‐360. doi:10.1016/j.virol.2007.05.042. Gromowski GD, Barrett ND, Barrett ADT. Characterization of dengue virus complex‐specific neutralizing epitopes on envelope protein domain III of dengue 2 virus. J Virol. 2008;82(17):8828‐8837. doi:10.1128/JVI.00606-08. Hiramatsu K, Tadano M, Men R, Lai C‐J. Mutational analysis of a neutralization epitope on the dengue type 2 virus (DEN2) envelope protein: monoclonal antibody resistant DEN2/DEN4 chimeras exhibit reduced mouse neurovirulence. Virology. 1996;224(2):437‐445. doi:10.1006/viro.1996.0550. Sukupolvi‐Petty S, Austin SK, Purtha WE, et al. Type‐ and subcomplex‐specific neutralizing antibodies against domain III of dengue virus type 2 envelope protein recognize adjacent epitopes. J Virol. 2007;81(23):12816‐12826. doi:10.1128/JVI.00432-07. |
| Grant Information: | Ministero della Salute; European Commission; Fondazione Romeo ed Enrica Invernizzi; Regione Lombardia |
| Contributed Indexing: | Keywords: dengue virus; epitope prediction; flavivirus; peptides; protein arrays; serodiagnosis |
| Substance Nomenclature: | 0 (Peptides) 0 (Biomarkers) 0 (Viral Proteins) 0 (Antibodies, Viral) |
| Entry Date(s): | Date Created: 20240918 Date Completed: 20240918 Latest Revision: 20240918 |
| Update Code: | 20250114 |
| DOI: | 10.1002/jmv.29923 |
| PMID: | 39291820 |
| Databáze: | MEDLINE |
Buďte první, kdo okomentuje tento záznam!
Full Text Finder
Nájsť tento článok vo Web of Science