An efficient blockchain-based framework for file sharing.
Uloženo v:
| Název: | An efficient blockchain-based framework for file sharing. |
|---|---|
| Autoři: | Peng W; School of Cyberspace Science, Harbin Institute of Technology, Harbin, 150001, China., Lu T; PLA31202, Guangzhou, 510000, China. azqsx098@qq.com., Peng W; Department of Engineering Physics, Tsinghua University, Beijing, 100084, China., Wang Z; PLA78156, Chongqing, 400000, China. |
| Zdroj: | Scientific reports [Sci Rep] 2024 Aug 03; Vol. 14 (1), pp. 18009. Date of Electronic Publication: 2024 Aug 03. |
| Způsob vydávání: | Journal Article |
| Jazyk: | English |
| Informace o časopise: | Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: PubMed not MEDLINE; MEDLINE |
| Imprint Name(s): | Original Publication: London : Nature Publishing Group, copyright 2011- |
| Abstrakt: | File sharing, being the foundation of the Internet, has traditionally relied on a centralized service architecture resulting in significant maintenance costs. Moreover, due to the lack of an effective file management system, instances of sensitive information going out of control and loss of confidentiality in file sharing have occurred frequently. In order to address the difficulty of tamper detection and the lack of supervision in the entire process of file transfer in the current Internet environment, this paper designs a blockchain-based system architecture for secure sharing of electronic documents. An efficient blockchain model is used in our framework, and with the help of distributed storage system and asymmetric encryption technology, file sharing can be controlled, reliable and traceable in the transfer process. Referring to existing consensus mechanisms, e.g., Delegated Proof of Stake (DPoS) and Practical Byzantine Fault Tolerance (PBFT), we propose a new consensus for efficient and secure file sharing. Our experimental results show that our framework can maintain a higher throughput than existing schemes. (© 2024. The Author(s).) |
| References: | The Editors of Encyclopedia Britannica. Napster (2023). Heckmann, O. et al. A Peer-to-Peer Content Distribution Network 69–78 (Springer, 2005). Maymounkov, P. & Mazières, D. Kademlia: A peer-to-peer information system based on the xor metric. In Peer-to-Peer Systems (eds Druschel, P. et al.) 53–65 (Springer, 2002). (PMID: 10.1007/3-540-45748-8_5) Selvaraj, C. & Anand, S. A survey on security issues of reputation management systems for peer-to-peer networks. Comput. Sci. Rev. 6, 145–160. https://doi.org/10.1016/j.cosrev.2012.04.001 (2012). (PMID: 10.1016/j.cosrev.2012.04.001) Dai, Z. & Guo, X. Investigation of e-commerce security and data platform based on the era of big data of the internet of things. Mobile Inf. Syst. 2022, 3023298. https://doi.org/10.1155/2022/3023298 (2022). (PMID: 10.1155/2022/3023298) Lu, J., Li, W., Sun, J., Xiao, R. & Liao, B. Secure and real-time traceable data sharing in cloud-assisted iot. IEEE Internet Things J. 11, 6521–6536. https://doi.org/10.1109/JIOT.2023.3314764 (2024). (PMID: 10.1109/JIOT.2023.3314764) Taylor, P. J., Dargahi, T., Dehghantanha, A., Parizi, R. M. & Choo, K.-K.R. A systematic literature review of blockchain cyber security. Digit. Commun. Netw. 6, 147–156. https://doi.org/10.1016/j.dcan.2019.01.005 (2020). (PMID: 10.1016/j.dcan.2019.01.005) Salman, T., Zolanvari, M., Erbad, A., Jain, R. & Samaka, M. Security services using blockchains: A state of the art survey. IEEE Commun. Surv. Tutorials 21, 858–880. https://doi.org/10.1109/COMST.2018.2863956 (2019). (PMID: 10.1109/COMST.2018.2863956) Sharma, P., Jindal, R. & Borah, M. D. Blockchain technology for cloud storage: A systematic literature review. ACM Comput. Surv. https://doi.org/10.1145/3403954 (2020). (PMID: 10.1145/3403954) Benet, J. IPFS - content addressed, versioned, P2P file system. arXiv https://doi.org/10.48550/arXiv.1407.3561 (2014). (PMID: 10.48550/arXiv.1407.3561) Chen, Y., Li, H., Li, K. & Zhang, J. An improved p2p file system scheme based on ipfs and blockchain. In: 2017 IEEE International Conference on Big Data (Big Data), 2652–2657, https://doi.org/10.1109/BigData.2017.8258226 (2017). Vimal, S. & Srivatsa, S. K. A new cluster p2p file sharing system based on ipfs and blockchain technology. J. Ambient. Intell. Humaniz. Comput. https://doi.org/10.1007/s12652-019-01453-5 (2019). (PMID: 10.1007/s12652-019-01453-5) Nyaletey, E., Parizi, R. M., Zhang, Q. & Choo, K.-K. R. Blockipfs - blockchain-enabled interplanetary file system for forensic and trusted data traceability. In: 2019 IEEE International Conference on Blockchain (Blockchain), 18–25, https://doi.org/10.1109/Blockchain.2019.00012 (2019). Liu, M., Palaoag, T. & Zhang, W. An e-resource sharing solution based on blockchain technology. In Proceeding of the 2021 4th International Conference on Blockchain Technology and Applications, ICBTA ’21 (ed. Liu, M.) 101–106 (Association for Computing Machinery, 2022). https://doi.org/10.1145/3510487.3510502 . (PMID: 10.1145/3510487.3510502) Dorri, A., Kanhere, S. S. & Jurdak, R. Towards an optimized blockchain for iot. In: 2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI), 173–178 (2017). Xu, L. et al. Diota: Decentralized-ledger-based framework for data authenticity protection in iot systems. IEEE Netw. 34, 38–46. https://doi.org/10.1109/MNET.001.1900136 (2020). (PMID: 10.1109/MNET.001.1900136) Müller, S. et al. Tangle 2.0 leaderless nakamoto consensus on the heaviest dag. IEEE Access 10, 105807–105842. https://doi.org/10.1109/ACCESS.2022.3211422 (2022). (PMID: 10.1109/ACCESS.2022.3211422) LeMahieu, C. Nano : A feeless distributed cryptocurrency network (2017). Guo, H. et al. Filedag: A multi-version decentralized storage network built on dag-based blockchain. IEEE Trans. Comput. https://doi.org/10.1109/TC.2023.3288760 (2023). (PMID: 10.1109/TC.2023.3288760) van den Hooff, J., Kaashoek, M. F. & Zeldovich, N. Versum: Verifiable computations over large public logs. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, CCS ’14 (ed. van den Hooff, J.) 1304–1316 (Association for Computing Machinery, 2014). https://doi.org/10.1145/2660267.2660327 . (PMID: 10.1145/2660267.2660327) Merkle, R. C. A digital signature based on a conventional encryption function. In A Conference on the Theory and Applications of Cryptographic Techniques on Advances in Cryptology, CRYPTO ’87 (ed. Merkle, R. C.) 369–378 (Springer-Verlag, 1987). Castro, M. & Liskov, B. Practical byzantine fault tolerance. In Proceedings of the Third Symposium on Operating Systems Design and Implementation, OSDI ’99 (ed. Castro, M.) 173–186 (USENIX Association, 1999). Barker, E. Nist special publication 800-57 part 1 revision 5 recommendation for key management – part 1: General (2020). Chen, Y. et al. A survey on blockchain systems: Attacks, defenses, and privacy preservation. High-Confid. Comput. 2, 100048. https://doi.org/10.1016/j.hcc.2021.100048 (2022). (PMID: 10.1016/j.hcc.2021.100048) Dong, Z., Zheng, E., Choon, Y. & Zomaya, A. Y. Dagbench: A performance evaluation framework for dag distributed ledgers. In: 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), 264–271, https://doi.org/10.1109/CLOUD.2019.00053 (2019). |
| Entry Date(s): | Date Created: 20240803 Latest Revision: 20240806 |
| Update Code: | 20250114 |
| PubMed Central ID: | PMC11297932 |
| DOI: | 10.1038/s41598-024-69011-4 |
| PMID: | 39097638 |
| Databáze: | MEDLINE |
Buďte první, kdo okomentuje tento záznam!
Full Text Finder
Nájsť tento článok vo Web of Science