Neural representation in active inference: Using generative models to interact with-and understand-the lived world.

Saved in:
Bibliographic Details
Title: Neural representation in active inference: Using generative models to interact with-and understand-the lived world.
Authors: Pezzulo G; Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy., D'Amato L; Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy.; Polytechnic University of Turin, Turin, Italy., Mannella F; Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy., Priorelli M; Institute of Cognitive Sciences and Technologies, National Research Council, Padua, Italy., Van de Maele T; IDLab, Department of Information Technology, Ghent University - imec, Ghent, Belgium., Stoianov IP; Institute of Cognitive Sciences and Technologies, National Research Council, Padua, Italy., Friston K; Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK.; VERSES Research Lab, Los Angeles, California, USA.
Source: Annals of the New York Academy of Sciences [Ann N Y Acad Sci] 2024 Apr; Vol. 1534 (1), pp. 45-68. Date of Electronic Publication: 2024 Mar 25.
Publication Type: Journal Article; Review
Language: English
Journal Info: Publisher: New York Academy of Sciences Country of Publication: United States NLM ID: 7506858 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1749-6632 (Electronic) Linking ISSN: 00778923 NLM ISO Abbreviation: Ann N Y Acad Sci Subsets: MEDLINE
Imprint Name(s): Publication: 2006- : New York, NY : Malden, MA : New York Academy of Sciences ; Blackwell
Original Publication: New York, The Academy.
MeSH Terms: Cognition* , Brain*, Humans ; Sensation ; Learning
Abstract: This paper considers neural representation through the lens of active inference, a normative framework for understanding brain function. It delves into how living organisms employ generative models to minimize the discrepancy between predictions and observations (as scored with variational free energy). The ensuing analysis suggests that the brain learns generative models to navigate the world adaptively, not (or not solely) to understand it. Different living organisms may possess an array of generative models, spanning from those that support action-perception cycles to those that underwrite planning and imagination; namely, from explicit models that entail variables for predicting concurrent sensations, like objects, faces, or people-to action-oriented models that predict action outcomes. It then elucidates how generative models and belief dynamics might link to neural representation and the implications of different types of generative models for understanding an agent's cognitive capabilities in relation to its ecological niche. The paper concludes with open questions regarding the evolution of generative models and the development of advanced cognitive abilities-and the gradual transition from pragmatic to detached neural representations. The analysis on offer foregrounds the diverse roles that generative models play in cognitive processes and the evolution of neural representation.
(© 2024 The New York Academy of Sciences.)
References: James, W. (1890). The principles of psychology. Dover Publications.
Baker, B., Lansdell, B., & Kording, K. P. (2022). Three aspects of representation in neuroscience. Trends in Cognitive Sciences, 26, 942–958. https://doi.org/10.1016/j.tics.2022.08.014.
Clark, A., & Grush, R. (1999). Towards a cognitive robotics. Adaptive Behavior, 7, 5–16.
Dietrich, E. (2007). Representation. In P. Thagard (Ed.), Philosophy of psychology and cognitive science (pp. 1–29). Elsevier.
Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27, 377–396.
Millikan, R. G. (2004). Varieties of meaning. MIT Press.
Ramsey, W. M. (2007). Representation reconsidered. Cambridge University Press.
Shea, N. (2014). Exploitable isomorphism and structural representation. Proceedings of the Aristotelian Society, 114, 123–144.
Vilarroya, O. (2017). Neural representation. A survey‐based analysis of the notion. Frontiers in Psychology, 8, 1458.
Pennartz, C. M. A. (2022). What is neurorepresentationalism? From neural activity and predictive processing to multi‐level representations and consciousness. Behavioural Brain Research, 432, 113969. https://doi.org/10.1016/j.bbr.2022.113969.
Parr, T., Pezzulo, G., & Friston, K. J. (2022). Active inference: The free energy principle in mind, brain, and behavior. MIT Press.
Hohwy, J. (2013). The predictive mind. Oxford University Press.
Clark, A. (2015). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford University Press.
Bruineberg, J., Kiverstein, J., & Rietveld, E. (2016). The anticipating brain is not a scientist: The free‐energy principle from an ecological‐enactive perspective. Synthese, 195, 2417–2444. https://doi.org/10.1007/s11229‐016‐1239‐1.
Sims, M., & Pezzulo, G. (2021). Modelling ourselves: What the free energy principle reveals about our implicit notions of representation. Synthese, 199, 7801–7833. https://doi.org/10.1007/s11229‐021‐03140‐5.
Tschantz, A., Barca, L., Maisto, D., Buckley, C. L., Seth, A. K., & Pezzulo, G. (2022). Simulating homeostatic, allostatic and goal‐directed forms of interoceptive control using active inference. Biological Psychology, 169, 108266. https://doi.org/10.1016/j.biopsycho.2022.108266.
Friston, K., & Ao, P. (2012). Free energy, value, and attractors. Computational and Mathematical Methods in Medicine, 2012, 1–27.
Craik, K. (1943). The nature of explanation. Cambridge University Press.
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55, 189–208.
O'keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely‐moving rat. Brain Research, 34, 171–175.
Ha, D., & Schmidhuber, J. (2018). World models. Arxiv:1803.10122 [cs, Stat]. https://doi.org/10.5281/zenodo.1207631.
Taniguchi, T., Murata, S., Suzuki, M., Ognibene, D., Lanillos, P., Ugur, E., Jamone, L., Nakamura, T., Ciria, A., Lara, B., & Pezzulo, G. (2023). World models and predictive coding for cognitive and developmental robotics: Frontiers and challenges. https://doi.org/10.48550/arXiv.2301.05832.
Barrett, L. F. (2017). The theory of constructed emotion: An active inference account of interoception and categorization. Social Cognitive and Affective Neuroscience, 12, 1–23. https://doi.org/10.1093/scan/nsw154.
Barrett, L. F., & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews Neuroscience, 16, 419–429. https://doi.org/10.1038/nrn3950.
Migeot, J. A., Duran‐Aniotz, C. A., Signorelli, C. M., Piguet, O., & Ibáñez, A. (2022). A predictive coding framework of allostatic‐interoceptive overload in frontotemporal dementia. Trends in Neurosciences, 45, 838–853. https://doi.org/10.1016/j.tins.2022.08.005.
Paulus, M. P., Feinstein, J. S., & Khalsa, S. S. (2019). An active inference approach to interoceptive psychopathology. Annual Review of Clinical Psychology, 15, 97–122. https://doi.org/10.1146/annurev‐clinpsy‐050718‐095617.
Pezzulo, G. (2013). Why do you fear the Bogeyman? An embodied predictive coding model of perceptual inference. Cognitive, Affective, and Behavioral Neuroscience, 14(3), 902–911.
Seth, A. K. (2013). Interoceptive inference, emotion, and the embodied self. Trends in Cognitive Sciences, 17, 565–573. https://doi.org/10.1016/j.tics.2013.09.007.
Seth, A. K., & Friston, K. J. (2016). Active interoceptive inference and the emotional brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20160007.
Pezzulo, G., & Cisek, P. (2016). Navigating the affordance landscape: Feedback control as a process model of behavior and cognition. Trends in Cognitive Sciences, 20, 414–424. https://doi.org/10.1016/j.tics.2016.03.013.
Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M S., Bohg, J., Bosselut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card, D., Castellon, R., Chatterji, N., Chen, A., Creel, K., Davis, J. Q., Demszky, D., … Wang, W. (2021). On the opportunities and risks of foundation models. Arxiv Preprint Arxiv:2108.07258.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert‐Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020). Language models are few‐shot learners. In Advances in neural information processing systems 1877–1901. Curran Associates, Inc.
Pezzulo, G., Parr, T., Cisek, P., Clark, A., & Friston, K. (2023). Generating meaning: Active inference and the scope and limits of passive AI. Trends in Cognitive Sciences, 28, 97–112. https://doi.org/10.1016/j.tics.2023.10.002.
von Helmholtz, H. (1867). Handbuch der physiologischen Optik. L. Voss.
Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra‐classical receptive‐field effects. Nature Neuroscience, 2, 79–87. https://doi.org/10.1038/4580.
Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360, 815–836. https://doi.org/10.1098/rstb.2005.1622.
Adams, R. A., Shipp, S., & Friston, K. J. (2013). Predictions not commands: Active inference in the motor system. Brain Structure and Function, 218, 611–643. https://doi.org/10.1007/s00429‐012‐0475‐5.
Friston, K. J., Daunizeau, J., Kilner, J., & Kiebel, S. J. (2010). Action and behavior: A free‐energy formulation. Biological Cybernetics, 102, 227–260. https://doi.org/10.1007/s00422‐010‐0364‐z.
Ororbia, A., & Kifer, D. (2022). The neural coding framework for learning generative models. Nature Communications, 13, 2064. https://doi.org/10.1038/s41467‐022‐29632‐7.
Friston, K., Fitzgerald, T., Rigoli, F., Schwartenbeck, P., & Pezzulo, G. (2016). Active inference: A process theory. Neural Computation, 29, 1–49. https://doi.org/10.1162/NECO_a_00912.
Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population codes. Nature Neuroscience, 9, 1432–1438. https://doi.org/10.1038/nn1790.
Fiser, J., Berkes, P., Orbán, G., & Lengyel, M. (2010). Statistically optimal perception and learning: From behavior to neural representations. Trends in Cognitive Sciences, 14, 119–130. https://doi.org/10.1016/j.tics.2010.01.003.
Sanborn, A. N. (2017). Types of approximation for probabilistic cognition: Sampling and variational. Brain and Cognition, 112, 98–101. https://doi.org/10.1016/j.bandc.2015.06.008.
Van de Maele, T., Dhoedt, B., Verbelen, T., & Pezzulo, G. (2023). Bridging cognitive maps: A hierarchical active inference model of spatial alternation tasks and the hippocampal‐prefrontal circuit. https://doi.org/10.48550/arXiv.2308.11463.
Jadhav, S. P., Kemere, C., German, P. W, & Frank, L. M. (2012). Awake hippocampal sharp‐wave ripples support spatial memory. Science, 336, 1454–1458. https://doi.org/10.1126/science.1217230.
Tang, W., Shin, J. D., & Jadhav, S. P. (2020). Multiple time‐scales of decision making in the hippocampus and prefrontal cortex. Biorxiv. https://doi.org/10.1101/2020.10.17.343699.
Schuck, N. W., Gaschler, R., Wenke, D., Heinzle, J., Frensch, P. A., Haynes, J.‐D., & Reverberi, C. (2015). Medial prefrontal cortex predicts internally driven strategy shifts. Neuron, 86, 331–340. https://doi.org/10.1016/j.neuron.2015.03.015.
George, D., Rikhye, R. V., Gothoskar, N., Guntupalli, J. S, Dedieu, A., & Lázaro‐Gredilla, M. (2021). Clone‐structured graph representations enable flexible learning and vicarious evaluation of cognitive maps. Nature Communications, 12, 2392. https://doi.org/10.1038/s41467‐021‐22559‐5.
Den Bakker, H., Van Dijck, M., Sun, J.‐J., & Kloosterman, F. (2023). Sharp‐wave‐ripple‐associated activity in the medial prefrontal cortex supports spatial rule switching. Cell Reports, 42, 112959. https://doi.org/10.1016/j.celrep.2023.112959.
Buzsáki, G. (2015). Hippocampal sharp wave‐ripple: A cognitive biomarker for episodic memory and planning. Hippocampus, 25, 1073–1188.
Foster, D. J. (2017). Replay comes of age. Annual Review of Neuroscience, 40, 581–602.
Gupta, A. S., Van Der Meer, M. A. A., Touretzky, D. S., & Redish, A. D. (2010). Hippocampal replay is not a simple function of experience. Neuron, 65, 695–705. https://doi.org/10.1016/j.neuron.2010.01.034.
Lansink, C. S., Goltstein, P. M., Lankelma, J. V., Mcnaughton, B. L., & Pennartz, C. M. A. (2009). Hippocampus leads ventral striatum in replay of place‐reward information. PLoS Biology, 7, e1000173.
Liu, K., Sibille, J., & Dragoi, G. (2018). Generative predictive codes by multiplexed hippocampal neuronal tuplets. Neuron, 99, 1329–1341.e6. https://doi.org/10.1016/j.neuron.2018.07.047.
Liu, Y., Dolan, R. J., Kurth‐Nelson, Z., & Behrens, T. E. J. (2019). Human replay spontaneously reorganizes experience. Cell, 178, 640–652.e14. https://doi.org/10.1016/j.cell.2019.06.012.
Peyrache, A., Khamassi, M., Benchenane, K., Wiener, S. I., & Battaglia, F. P. (2009). Replay of rule‐learning related neural patterns in the prefrontal cortex during sleep. Nature Neuroscience, 12, 919–926.
Pfeiffer, B. E., & Foster, D. J. (2015). Autoassociative dynamics in the generation of sequences of hippocampal place cells. Science, 349, 180–183. https://doi.org/10.1126/science.aaa9633.
Wilson, M. A., & Mcnaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science, 265, 676–679.
Wittkuhn, L., & Schuck, N. W. (2021). Dynamics of fMRI patterns reflect sub‐second activation sequences and reveal replay in human visual cortex. Nature Communications, 12, 1795. https://doi.org/10.1038/s41467‐021‐21970‐2.
Friston, K. J., Lin, M., Frith, C. D., Pezzulo, G., Hobson, J. A, & Ondobaka, S. (2017). Active inference, curiosity and insight. Neural Computation, 29, 2633–2683. https://doi.org/10.1162/neco_a_00999.
Pezzulo, G., Zorzi, M., & Corbetta, M. (2021). The secret life of predictive brains: What's spontaneous activity for? Trends in Cognitive Sciences, 25, 730–743. https://doi.org/10.1016/j.tics.2021.05.007.
Stoianov, I., Maisto, D., & Pezzulo, G. (2022). The hippocampal formation as a hierarchical generative model supporting generative replay and continual learning. Progress in Neurobiology, 217, 102329. https://doi.org/10.1016/j.pneurobio.2022.102329.
Mcclelland, J. L., Mcnaughton, B. L., & O'reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419–457.
Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based on approximating dynamic programming. In Proceedings of the 7th International Conference on Machine Learning (pp. 216–224). San Mateo, CA: Morgan Kaufmann.
Friston, K., & Buzsáki, G. (2016). The functional anatomy of time: What and when in the brain. Trends in Cognitive Sciences, 20, 500–511. https://doi.org/10.1016/j.tics.2016.05.001.
Husserl, E. (2019). The phenomenology of internal time‐consciousness. Indiana University Press.
Piaget, J. (1954). The construction of reality in the child. Routledge.
Pezzulo, G., Van Der Meer, M. A. A., Lansink, C. S., & Pennartz, C. M. A. (2014). Internally generated sequences in learning and executing goal‐directed behavior. Trends in Cognitive Sciences, 18, 647–657. https://doi.org/10.1016/j.tics.2014.06.011.
Pezzulo, G., Kemere, C., & Van Der Meer, M. A. A. (2017). Internally generated hippocampal sequences as a vantage point to probe future‐oriented cognition. Annals of the New York Academy of Sciences, 1396, 144–165.
Pezzulo, G., Donnarumma, F., Maisto, D., & Stoianov, I. (2019). Planning at decision time and in the background during spatial navigation. Current Opinion in Behavioral Sciences, 29, 69–76. https://doi.org/10.1016/j.cobeha.2019.04.009.
Pezzulo, G., Parr, T., & Friston, K. J. (2021). The evolution of brain architectures for predictive coding and active inference. Philosophical Transactions of the Royal Society B: Biological Sciences, 377(1844), 20200531.
Guntupalli, J. S., Raju, R. V., Kushagra, S., Wendelken, C., Sawyer, D., Deshpande, I., Zhou, G., Lázaro‐Gredilla, M., & George, D. (2022). Graph schemas as abstractions for transfer learning, inference, and planning.
Buzsáki, G. (2019). The brain from inside out. Oxford University Press.
Hohwy, J. (2016). The self‐evidencing brain. Noûs, 50, 259–285. https://doi.org/10.1111/nous.12062.
Chung, S., & Abbott, L. F. (2021). Neural population geometry: An approach for understanding biological and artificial neural networks. Current Opinion in Neurobiology, 70, 137–144. https://doi.org/10.1016/j.conb.2021.10.010.
Muhle‐Karbe, P. S., Sheahan, H., Pezzulo, G., Spiers, H. J., Chien, S., Schuck, N. W., & Summerfield, C. (2023). Goal‐seeking compresses neural codes for space in the human hippocampus and orbitofrontal cortex. Neuron, 111, 3885–3899.e6. https://doi.org/10.1016/j.neuron.2023.08.021.
Smith, R., Schwartenbeck, P., Parr, T., & Friston, K. J. (2020). An active inference approach to modeling structure learning: Concept learning as an example case. Frontiers in Computational Neuroscience, 14, 41.
Hollup, S. A., Molden, S., Donnett, J. G., Moser, M.‐B., & Moser, E. I. (2001). Accumulation of hippocampal place fields at the goal location in an annular watermaze task. Journal of Neuroscience, 21, 1635–1644.
Nyberg, N., Duvelle, É., Barry, C., & Spiers, H. J. (2022). Spatial goal coding in the hippocampal formation. Neuron, 110, 394–422. https://doi.org/10.1016/j.neuron.2021.12.012.
O'keefe, J., & Conway, D. H. (1978). Hippocampal place units in the freely moving rat: Why they fire where they fire. Experimental Brain Research, 31, 573–590. https://doi.org/10.1007/BF00239813.
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423. https://doi.org/10.1002/j.1538‐7305.1948.tb01338.x.
McKay, D. (1995). A free–energy minimization algorithm for decoding and cryptanalysis. Electronics Letters, 31, 445–447.
Wallace, C. S. (1999). Minimum message length and Kolmogorov complexity. Computer Journal, 42, 270–283.
Barto, A., Mirolli, M., & Baldassarre, G. (2013). Novelty or surprise? Frontiers in Psychology, 4, 907.
Schmidhuber, J. (1991). Adaptive confidence and adaptive curiosity. Institut für Informatik, Technische Universitat.
Schmidhuber, J. (2006). Developmental robotics, optimal artificial curiosity, creativity, music, and the fine arts. Connection Science, 18, 173–187.
Schwartenbeck, P., Fitzgerald, T., Dolan, R. J., & Friston, K. (2013). Exploration, novelty, surprise, and free energy minimization. Frontiers in Psychology, 4, 710.
Sun, Y., Gomez, F., & Schmidhuber, J. (2011). Planning to be surprised: Optimal Bayesian exploration in dynamic environments. In Artificial General Intelligence: 4th International Conference, AGI 2011, Mountain View, CA, USA, August 3–6, 2011 (pp. 41–51). Springer.
Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., & Lerchner, A. (2016). beta‐vae: Learning basic visual concepts with a constrained variational framework. In International Conference on Learning Representations.
Adams, R. A., Stephan, K. E., Brown, H. R., Frith, C. D., & Friston, K. J. (2013). The computational anatomy of psychosis. Frontiers in Psychiatry, 4, 47. https://doi.org/10.3389/fpsyt.2013.00047.
Barrett, L. F., Quigley, K. S., & Hamilton, P. (2016). An active inference theory of allostasis and interoception in depression. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20160011.
Khalsa, S. S., Adolphs, R., Cameron, O. G., Critchley, H D., Davenport, P. W., Feinstein, J. S., Feusner, J. D., Garfinkel, S. N., Lane, R. D., Mehling, W. E., Meuret, A. E., Nemeroff, C. B., Oppenheimer, S., Petzschner, F. H., Pollatos, O., Rhudy, J. L., Schramm, L. P., Simmons, W. K, Stein, M. B., … Zucker, N. (2018). Interoception and mental health: A roadmap. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3, 501–513. https://doi.org/10.1016/j.bpsc.2017.12.004.
Maisto, D., Barca, L., Van Den Bergh, O., & Pezzulo, G. (2021). Perception and misperception of bodily symptoms from an active inference perspective: Modelling the case of panic disorder. Psychological Review, 128, 690–710.
Smith, R., Kuplicki, R., Feinstein, J., Forthman, K. L., Stewart, J. L., Paulus, M. P., & Khalsa, S. S. (2020). A Bayesian computational model reveals a failure to adapt interoceptive precision estimates across depression, anxiety, eating, and substance use disorders. PLOS Computational Biology, 16, e1008484. https://doi.org/10.1371/journal.pcbi.1008484.
Stephan, K. E., Manjaly, Z. M., Mathys, C. D., Weber, L A. E., Paliwal, S., Gard, T., Tittgemeyer, M., Fleming, S. M., Haker, H., Seth, A. K., & Petzschner, F. H. (2016). Allostatic self‐efficacy: A metacognitive theory of dyshomeostasis‐induced fatigue and depression. Frontiers in Human Neuroscience, 10, 550. https://doi.org/10.3389/fnhum.2016.00550.
Van Den Bergh, O., Witthöft, M., Petersen, S., & Brown, R. J. (2017). Symptoms and the body: Taking the inferential leap. Neuroscience & Biobehavioral Reviews, 74, 185–203. https://doi.org/10.1016/j.neubiorev.2017.01.015.
Martin, J. M., Solms, M., & Sterzer, P. (2021). Useful misrepresentation: Perception as embodied proactive inference. Trends in Neurosciences, 44, 619–628. https://doi.org/10.1016/j.tins.2021.04.007.
Seth, A. K., & Tsakiris, M. (2018). Being a beast machine: The somatic basis of selfhood. Trends in Cognitive Sciences, 22, 969–981. https://doi.org/10.1016/j.tics.2018.08.008.
Pezzulo, G., Rigoli, F., & Friston, K. J. (2018). Hierarchical active inference: A theory of motivated control. Trends in Cognitive Sciences, 22, 294–306.
Kruglanski, A. W., Jasko, K., & Friston, K. (2020). All thinking is ‘wishful’ thinking. Trends in Cognitive Sciences, 24, 413–424. https://doi.org/10.1016/j.tics.2020.03.004.
Rigoli, F., Martinelli, C., & Pezzulo, G. (2021). I want to believe: Delusion, motivated reasoning, and Bayesian decision theory. Cognitive Neuropsychiatry, 26, 408–420. https://doi.org/10.1080/13546805.2021.1982686.
Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. Henry Holt and Co., Inc.
Conant, R. C., & Ross Ashby, W. (1970). Every good regulator of a system must be a model of that system. International Journal of Systems Science, 1, 89–97.
Pezzulo, G. (2016). Toward mechanistic models of action‐oriented and detached cognition. Behavioral and Brain Sciences, 39, e130. https://doi.org/10.1017/S0140525x15001648.
Tschantz, A., Seth, A. K., & Buckley, C. L. (2020). Learning action‐oriented models through active inference. PLOS Computational Biology, 16, e1007805. https://doi.org/10.1371/journal.pcbi.1007805.
Mannella, F., Maggiore, F., Baltieri, M., & Pezzulo, G. (2021). Active inference through whiskers. Neural Networks, 144, 428–437. https://doi.org/10.1016/j.neunet.2021.08.037.
Voigts, J., Herman, D. H., & Celikel, T. (2015). Tactile object localization by anticipatory whisker motion. Journal of Neurophysiology, 113, 620–632. https://doi.org/10.1152/jn.00241.2014.
Gigerenzer, G., & Gaissmaier, W. (2011). Heuristic decision making. Annual Review of Psychology, 62, 451–482. https://doi.org/10.1146/annurev‐psych‐120709‐145346.
Mansell, W. (2011). Control of perception should be operationalized as a fundamental property of the nervous system. Topics in Cognitive Science, 3, 257–261. https://doi.org/10.1111/j.1756‐8765.2011.01140.x.
Ahissar, E., & Assa, E. (2016). Perception as a closed‐loop convergence process. eLife, 5, e12830. https://doi.org/10.7554/eLife.12830.
O'Regan, J. K., & Noe, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24, 883–917.
Mannella, F., & Tummolini, L. (2022). Kick‐starting concept formation with intrinsically motivated learning: The grounding by competence acquisition hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 378, 20210370. https://doi.org/10.1098/rstb.2021.0370.
Gigerenzer, G. (2021). Embodied heuristics. Frontiers in Psychology, 12, 711289. https://doi.org/10.3389/fpsyg.2021.711289.
Hoffman, D. D., Singh, M., & Prakash, C. (2015). The interface theory of perception. Psychonomic Bulletin and Review, 22, 1480–1506. https://doi.org/10.3758/s13423‐015‐0890‐8.
Mcbeath, M. K., Shaffer, D. M., & Kaiser, M. K. (1995). How baseball outfielders determine where to run to catch fly balls. Science, 268, 569–573.
Raab, M. (2020). Judgment, decision‐making, and embodied choices. Academic Press.
Kato, S., Kaplan, H. S., Schrödel, T., Skora, S., Lindsay, T. H., Yemini, E., Lockery, S., & Zimmer, M. (2015). Global brain dynamics embed the motor command sequence of Caenorhabditis elegans. Cell, 163, 656–669. https://doi.org/10.1016/j.cell.2015.09.034.
Brennan, C., & Proekt, A. (2019). A quantitative model of conserved macroscopic dynamics predicts future motor commands. eLife, 8, e46814. https://doi.org/10.7554/eLife.46814.
Attias, H. (2003). Planning by probabilistic inference. In Proceedings of the 9th International Workshop on Artificial Intelligence and Statistics.
Botvinick, M., & Toussaint, M. (2012). Planning as inference. Trends in Cognitive Sciences, 16, 485–488. https://doi.org/10.1016/j.tics.2012.08.006.
Kaplan, R., & Friston, K. J. (2018). Planning and navigation as active inference. Biological Cybernetics, 112, 323–343. https://doi.org/10.1007/s00422‐018‐0753‐2.
Lanillos, P., Meo, C., Pezzato, C., Meera, A. A., Baioumy, M., Ohata, W., Tschantz, A., Millidge, B., Wisse, M., Buckley, C L., & Tani, J. (2021). Active inference in robotics and artificial agents: Survey and challenges. https://doi.org/10.48550/arXiv.2112.01871.
Friston, K. (2010). The free‐energy principle: A unified brain theory? Nature Reviews Neuroscience, 11, 127–138. https://doi.org/10.1038/nrn2787.
Frank, S. A. (2012). Natural selection. V. How to read the fundamental equations of evolutionary change in terms of information theory. Journal of Evolutionary Biology, 25, 2377–2396. https://doi.org/10.1111/jeb.12010.
Friston, K., Friedman, D. A., Constant, A., Knight, V. B, Fields, C., Parr, T., & Campbell, J. O. (2023). A variational synthesis of evolutionary and developmental dynamics. Entropy, 25, 964. https://doi.org/10.3390/e25070964.
Vanchurin, V., Wolf, Y. I., Katsnelson, M. I., & Koonin, E. V. (2022). Toward a theory of evolution as multilevel learning. Proceedings of the National Academy of Sciences, 119, e2120037119. https://doi.org/10.1073/pnas.2120037119.
Albarracin, M., Demekas, D., Ramstead, M. J. D., & Heins, C. (2022). Epistemic communities under active inference. Entropy, 24, 476. https://doi.org/10.3390/e24040476.
Constant, A., Ramstead, M. J. D., Veissière, S. P. L., Campbell, J. O., & Friston, K. J. (2018). A variational approach to niche construction. Journal of the Royal Society Interface, 15, 20170685.
Laland, K., Matthews, B., & Feldman, M. W. (2016). An introduction to niche construction theory. Ecology and Evolution, 30, 191–202. https://doi.org/10.1007/s10682‐016‐9821‐z.
Vasil, J., Badcock, P. B., Constant, A., Friston, K., & Ramstead, M. J. D. (2020). A world unto itself: Human communication as active inference. Frontiers in Psychology, 11, 417.
Veissière, S., Constant, A., Ramstead, M. J. D., Friston, K. J., & Kirmayer, L. J. (2019). Thinking through other minds: A variational approach to cognition and culture. Behavioral and Brain Sciences, 43, e90.
Corcoran, A. W., Pezzulo, G., & Hohwy, J. (2020). From allostatic agents to counterfactual cognisers: Active inference, biological regulation, and the origins of cognition. Biology & Philosophy, 35, 32. https://doi.org/10.1007/s10539‐020‐09746‐2.
Bernardi, S., Benna, M. K., Rigotti, M., Munuera, J., Fusi, S., & Salzman, C. D. (2020). The geometry of abstraction in the hippocampus and prefrontal cortex. Cell, 183, 954–967.e21.e21. https://doi.org/10.1016/j.cell.2020.09.031.
Buzsáki, G., Peyrache, A., & Kubie, J. (2014). Emergence of cognition from action. Cold Spring Harbor Symposia on Quantitative Biology, 79, 41–50. https://doi.org/10.1101/sqb.2014.79.024679.
Buzsáki, G., & Moser, E. I. (2013). Memory, navigation and theta rhythm in the hippocampal‐entorhinal system. Nature Neuroscience, 16, 130–138. https://doi.org/10.1038/nn.3304.
Cisek, P. (2019). Resynthesizing behavior through phylogenetic refinement. Attention, Perception, & Psychophysics, 81, 2265–2287. https://doi.org/10.3758/s13414‐019‐01760‐1.
Cisek, P. (2021). An evolutionary perspective on embodiment. In M. D. Robinson & L. E. Thomas (Eds.), Handbook of embodied psychology: Thinking, feeling, and acting (pp. 547–571).
Pezzulo, G., & Castelfranchi, C. (2007). The symbol detachment problem. Cognitive Processing, 8, 115–131.
Livneh, Y., Ramesh, R. N., Burgess, C. R., Levandowski, K. M., Madara, J. C., Fenselau, H., Goldey, G. J., Diaz, V. E., Jikomes, N., Resch, J. M., Lowell, B. B., & Andermann, M. L. (2017). Homeostatic circuits selectively gate food cue responses in insular cortex. Nature, 546, 611–616. https://doi.org/10.1038/nature22375.
Clark, H. H. (1996). Using language. Cambridge University Press.
Pezzulo, G., Donnarumma, F., Dindo, H., D'ausilio, A., Konvalinka, I., & Castelfranchi, C. (2018). The body talks: Sensorimotor communication and its brain and kinematic signatures. Physics of Life Reviews, 28, 1–21. https://doi.org/10.1016/j.plrev.2018.06.014.
Steels, L. (2003). Intelligence with representation. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 361, 2381–2395.
Steels, L. (2006). Experiments on the emergence of human communication. Trends in Cognitive Sciences, 10, 347–349.
Grant Information: 820213 International ERC_ European Research Council
Contributed Indexing: Keywords: action‐oriented models; active inference; explicit models; generative model; neural representation; predictive coding
Entry Date(s): Date Created: 20240326 Date Completed: 20240419 Latest Revision: 20240419
Update Code: 20250114
DOI: 10.1111/nyas.15118
PMID: 38528782
Database: MEDLINE
Be the first to leave a comment!
You must be logged in first