Non-canonical amino acid bioincorporation into antimicrobial peptides and its challenges.
Uloženo v:
| Název: | Non-canonical amino acid bioincorporation into antimicrobial peptides and its challenges. |
|---|---|
| Autoři: | Enninful GN; University of New South Wales, Kensington, New South Wales, Australia., Kuppusamy R; University of New South Wales, Kensington, New South Wales, Australia., Tiburu EK; University of Ghana, Accra, Ghana., Kumar N; University of New South Wales, Kensington, New South Wales, Australia., Willcox MDP; University of New South Wales, Kensington, New South Wales, Australia. |
| Zdroj: | Journal of peptide science : an official publication of the European Peptide Society [J Pept Sci] 2024 Jun; Vol. 30 (6), pp. e3560. Date of Electronic Publication: 2024 Jan 23. |
| Způsob vydávání: | Journal Article; Review |
| Jazyk: | English |
| Informace o časopise: | Publisher: John Wiley & Sons Country of Publication: England NLM ID: 9506309 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1099-1387 (Electronic) Linking ISSN: 10752617 NLM ISO Abbreviation: J Pept Sci Subsets: MEDLINE |
| Imprint Name(s): | Original Publication: Chichester, West Sussex, UK : John Wiley & Sons, c1995- |
| Výrazy ze slovníku MeSH: | Amino Acids*/chemistry , Amino Acids*/metabolism , Antimicrobial Peptides*/chemistry , Antimicrobial Peptides*/pharmacology, Humans ; Anti-Bacterial Agents/pharmacology ; Anti-Bacterial Agents/chemistry ; Solid-Phase Synthesis Techniques/methods ; Microbial Sensitivity Tests |
| Abstrakt: | The rise of antimicrobial resistance and multi-drug resistant pathogens has necessitated explorations for novel antibiotic agents as the discovery of conventional antibiotics is becoming economically less viable and technically more challenging for biopharma. Antimicrobial peptides (AMPs) have emerged as a promising alternative because of their particular mode of action, broad spectrum and difficulty that microbes have in becoming resistant to them. The AMPs bacitracin, gramicidin, polymyxins and daptomycin are currently used clinically. However, their susceptibility to proteolytic degradation, toxicity profile, and complexities in large-scale manufacture have hindered their development. To improve their proteolytic stability, methods such as integrating non-canonical amino acids (ncAAs) into their peptide sequence have been adopted, which also improves their potency and spectrum of action. The benefits of ncAA incorporation have been made possible by solid-phase peptide synthesis. However, this method is not always suitable for commercial production of AMPs because of poor yield, scale-up difficulties, and its non-'green' nature. Bioincorporation of ncAA as a method of integration is an emerging field geared towards tackling the challenges of solid-phase synthesis as a green, cheaper, and scalable alternative for commercialisation of AMPs. This review focusses on the bioincorporation of ncAAs; some challenges associated with the methods are outlined, and notes are given on how to overcome these challenges. The review focusses particularly on addressing two key challenges: AMP cytotoxicity towards microbial cell factories and the uptake of ncAAs that are unfavourable to them. Overcoming these challenges will draw us closer to a greater yield and an environmentally friendly and sustainable approach to make AMPs more druggable. (© 2024 The Authors. Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.) |
| References: | Buke C, Hosgor‐Limoncu M, Ermertcan S, et al. Irrational use of antibiotics among university students. J Infect. 2005;51(2):135‐139. doi:10.1016/j.jinf.2004.12.001. Bosley H, Henshall C, Appleton JV, Jackson D. A systematic review to explore influences on parental attitudes towards antibiotic prescribing in children. J Clin Nurs. 2018;27(5–6):892‐905. doi:10.1111/jocn.14073. Chawla M, Verma J, Gupta R, Das B. Antibiotic Potentiators against multidrug‐resistant bacteria: discovery, development, and clinical relevance. Front Microbiol. 2022;13:887251. doi:10.3389/fmicb.2022.887251. World Health Organization. Antimicrobial resistance. Steiner H, Hultmark D, Engström Å, Bennich H, Boman HG. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981;292(5820):246‐248. Mangoni ML, McDermott AM, Zasloff M. Antimicrobial peptides and wound healing: biological and therapeutic considerations. Exp Dermatol. 2016;25(3):167‐173. doi:10.1111/exd.12929. Ramos R, Silva JP, Rodrigues AC, et al. Wound healing activity of the human antimicrobial peptide LL37. Peptides (NY). 2011;32(7):1469‐1476. doi:10.1016/j.peptides.2011.06.005. Wang J, Dou X, Song J, Lyu Y, et al. Antimicrobial peptides: promising alternatives in the post feeding antibiotic era. Med Res Rev. 2018;39(3):831‐859. doi:10.1002/med.21542. Roudi R, Syn NL, Roudbary M. Antimicrobial peptides as biologic and immunotherapeutic agents against cancer: a comprehensive overview. Front Immunol. 2017;8:1320 doi:10.3389/FIMMU.2017.01320. Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol. 2018;9:281. doi:10.3389/FPHAR.2018.00281. Rezende SB, Oshiro KGN, Júnior NGO, Franco OL, Cardoso MH. Advances on chemically modified antimicrobial peptides for generating peptide antibiotics. Chem Commun. 2021;57(88):11578‐11590. doi:10.1039/D1CC03793E. CTG Labs ‐ NCBI. Search Results|Beta ClinicalTrials.gov. Dijksteel GS, Ulrich MMW, Middelkoop E, Boekema BKHL. Review: lessons learned from clinical trials using antimicrobial peptides (AMPs). Front Microbiol. 2021;12:616979. doi:10.3389/fmicb.2021.616979. Vu QN, Young R, Sudhakar HK, et al. Cyclisation strategies for stabilising peptides with irregular conformations. RSC Med Chem. 2021;12(6):887‐901. doi:10.1039/D1MD00098E. Hayes HC, Luk LYP, Tsai Y‐H. Approaches for peptide and protein cyclisation. Org Biomol Chem. 2021;19(18):3983‐4001. doi:10.1039/D1OB00411E. Rounds T, Straus SK. Lipidation of antimicrobial peptides as a design strategy for future alternatives to antibiotics. Int J Mol Sci. 2020;21(24):9692. doi:10.3390/ijms21249692. Lai Z, Chen H, Yuan X, et al. Designing double‐site lipidated peptide amphiphiles as potent antimicrobial biomaterials to combat multidrug‐resistant bacteria. Front Microbiol. 2022;13:1074359. doi:10.3389/fmicb.2022.1074359. Hart GW, Brew K, Grant GA, Bradshaw RA, Lennarz WJ. Primary structural requirements for the enzymatic formation of the N‐glycosidic bond in glycoproteins. Studies with natural and synthetic peptides. J Biol Chem. 1979;254(19):9747‐9753. doi:10.1016/S0021‐9258(19)83579‐2. McManus AM, Otvos L, Hoffmann R, Craik DJ. Conformational studies by NMR of the antimicrobial peptide, drosocin, and its non‐glycosylated derivative: effects of glycosylation on solution conformation. Biochemistry. 1999;38(2):705‐714. doi:10.1021/bi981956d. Svenson J, Karstad R, Flaten GE, Brandsdal B‐O, Brandl M, Svendsen JS. Altered activity and physicochemical properties of short cationic antimicrobial peptides by incorporation of arginine analogues. Mol Pharm. 2009;6(3):996‐1005. doi:10.1021/mp900057k. Li Y, Liu T, Liu Y, et al. Antimicrobial activity, membrane interaction and stability of the D‐amino acid substituted analogs of antimicrobial peptide W3R6. J Photochem Photobiol B. 2019;200:111645. Nguyen LT, Chau JK, Perry NA, de Boer L, Zaat SAJ, Vogel HJ. Serum stabilities of short tryptophan‐ and arginine‐rich antimicrobial peptide analogs. PLoS ONE. 2010;5(9):e12684. Jaber S, Nemska V, Iliev I, et al. Synthesis and biological studies on (KLAKLAK)2‐NH2 analog containing unnatural amino acid β‐ala and conjugates with second pharmacophore. Molecules. 2021;26(23):7321. doi:10.3390/molecules26237321. Jensen KJ. Solid‐phase peptide synthesis: An Introduction. In: Peptide Synthesis and Applications. Springer; 2013:1‐21. Münzker L, Oddo A, Hansen PR. Chemical synthesis of antimicrobial peptides. In: Antimicrobial Peptides. Springer; 2017:35‐49. Li Y. Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr Purif. 2011;80(2):260‐267. doi:10.1016/j.pep.2011.08.001. Vidovic V, Prongidi‐Fix L, Bechinger B, Werten S. Production and isotope labeling of antimicrobial peptides in Escherichia coli by means of a novel fusion partner that enables high‐yield insoluble expression and fast purification. J Pept Sci. 2009;15(4):278‐284. doi:10.1002/psc.1112. Tian Z, Dong T, Yang Y, Teng D, Wang J. Expression of antimicrobial peptide LH multimers in Escherichia coli C43(DE3). Appl Microbiol Biotechnol. 2009;83(1):143‐149. doi:10.1007/s00253‐009‐1893‐z. Metlitskaia L, Cabralda JE, Suleman D, et al. Recombinant antimicrobial peptides efficiently produced using novel cloning and purification processes. Biotechnol Appl Biochem. 2004;39(3):339‐345. doi:10.1042/BA20030100. Borrero J, Jiménez JJ, Gútiez L, Herranz C, Cintas LM, Hernández PE. Protein expression vector and secretion signal peptide optimization to drive the production, secretion, and functional expression of the bacteriocin enterocin A in lactic acid bacteria. J Biotechnol. 2011;156(1):76‐86. doi:10.1016/j.jbiotec.2011.07.038. Borrero J, Jiménez JJ, Gútiez L, Herranz C, Cintas LM, Hernández PE. Use of the Usp45 Lactococcal secretion signal sequence to drive the secretion and functional expression of enterococcal bacteriocins in Lactococcus lactis. Appl Microbiol Biotechnol. 2011;89(1):131‐143. doi:10.1007/s00253‐010‐2849‐z. Guo C, Huang Y, Zheng H, et al. Secretion and activity of antimicrobial peptide cecropin D expressed in Pichia pastoris. Exp Ther Med. 2012;4(6):1063‐1068. doi:10.3892/etm.2012.719. Adachi J, Katsura K, Seki E, et al. Cell‐free protein synthesis using S30 extracts from Escherichia coli RF zero strains for efficient incorporation of non‐natural amino acids into proteins. Int J Mol Sci. 2019;20(3):492. doi:10.3390/ijms20030492. Magliery TJ, Anderson JC, Schultz PG. Expanding the genetic code: selection of efficient suppressors of four‐base codons and identification of “shifty” four‐base codons with a library approach in Escherichia coli1 Edited by M. Gottesman. J Mol Biol. 2001;307(3):755‐769. doi:10.1006/jmbi.2001.4518. Cornish VW, Mendel D, Schultz PG. Probing protein structure and function with an expanded genetic code. Angew Chem Int Ed Engl. 1995;34(6):621‐633. doi:10.1002/anie.199506211. Wang L, Brock A, Herberich B, Schultz PG. Expanding the genetic code of Escherichia coli. Science (1979). 2001;292(5516):498‐500. doi:10.1126/science.1060077. Kleerebezem M, Beerthuyzen MM, Vaughan EE, M de VW, Kuipers OP. Controlled gene expression systems for lactic acid bacteria: transferable nisin‐inducible expression cassettes for Lactococcus, Leuconostoc, and Lactobacillus Spp. Appl Environ Microbiol. 1997;63(11):4581‐4584. doi:10.1128/aem.63.11.4581‐4584.1997. Bartholomae M, Baumann T, Nickling JH, et al. Expanding the genetic code of Lactococcus lactis and Escherichia coli to incorporate non‐canonical amino acids for production of modified lantibiotics. Front Microbiol. 2018;9:657. doi:10.3389/fmicb.2018.00657. Thakur A, Sharma A, Alajangi HK, et al. In pursuit of next‐generation therapeutics: antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology‐based delivery, and clinical applications. Int J Biol Macromol. 2022;218:135‐156. doi:10.1016/j.ijbiomac.2022.07.103. Malmsten M. Antimicrobial peptides. Ups J Med Sci. 2014;119(2):199‐204. doi:10.3109/03009734.2014.899278. Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Clin Microbiol Rev. 2006;19(3):491‐511. doi:10.1128/CMR.00056‐05. Harris F, Dennison SR, Phoenix DA. Anionic antimicrobial peptides from eukaryotic organisms. Curr Protein Pept Sci. 2009;10(6):585‐606. Matsuzaki K et al. Biochim Biophys Acta (BBA) ‐ Biomembranes. 1999;1462(1–2):1‐10. doi:10.1016/S0005‐2736(99)00197‐2. Fabisiak A, Murawska N, Fichna J. LL‐37: cathelicidin‐related antimicrobial peptide with pleiotropic activity. Pharmacol Rep. 2016;68(4):802‐808. Teixeira V, Feio MJ, Bastos M. Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res. 2012;51(2):149‐177. Lewies A, Wentzel JF, Jacobs G, du Plessis LH. The potential use of natural and structural analogues of antimicrobial peptides in the fight against neglected tropical diseases. Molecules. 2015;20(8):15392‐15433. Glukhov E, Stark M, Burrows LL, Deber CM. Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes. J Biol Chem. 2005;280(40):33960‐33967. Wimley WC. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol. 2010;5(10):905‐917. Unger T, Oren Z. Biochemistry YS‐, 2001 undefined. the effect of cyclization of magainin 2 and melittin analogues on structure, function, and model membrane interactions: implication to their mode of action. Vol. 40(21). ACS Publications; 2001:6388‐6397. doi:10.1021/bi0026066. Feder R, Dagan A, Mor A. Structure‐activity relationship study of antimicrobial dermaseptin S4 showing the consequences of peptide oligomerization on selective cytotoxicity. J Biol Chem. 2000;275(6):4230‐4238. Tossi A, Sandri L, Giangaspero A. Amphipathic,‐helical antimicrobial peptides. Biopolymers. 2000;55:4‐30. doi:10.1002/1097‐0282(2000)55:1. Yu L, Li K, Zhang J, et al. Antimicrobial peptides and macromolecules for combating microbial infections: from agents to interfaces. ACS Appl Bio Mater. 2022;5(2):366‐393. doi:10.1021/acsabm.1c01132. Tummanapalli SS, Willcox MD. Antimicrobial resistance of ocular microbes and the role of antimicrobial peptides. Clin Exp Optom. 2021;104(3):295‐307. doi:10.1111/cxo.13125. Bechinger B, Gorr S‐U. Antimicrobial peptides: mechanisms of action and resistance. J Dent Res. 2016;96(3):254‐260. doi:10.1177/0022034516679973. Yasir M, Dutta D, Willcox MDP. Mode of action of the antimicrobial peptide Mel4 is independent of Staphylococcus aureus cell membrane permeability. PLoS ONE. 2019;14(7):e0215703. Yasir M, Dutta D, Willcox MDP. Comparative mode of action of the antimicrobial peptide melimine and its derivative Mel4 against pseudomonas aeruginosa. Sci Rep. 2019;9(1):7063. doi:10.1038/s41598‐019‐42440‐2. Zhu Y, Hao W, Wang X, et al. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug‐resistant infections. Med Res Rev. 2022;42(4):1377‐1422. doi:10.1002/med.21879. Di Somma A, Moretta A, Canè C, Cirillo A, Duilio A. Antimicrobial and antibiofilm peptides. Biomolecules. 2020;10(4):652. doi:10.3390/biom10040652. Luo Y, Song Y. Mechanism of antimicrobial peptides: antimicrobial, anti‐inflammatory and antibiofilm activities. Int J Mol Sci. 2021;22(21):11401. doi:10.3390/ijms222111401. Browne K, Chakraborty S, Chen R, et al. A new era of antibiotics: the clinical potential of antimicrobial peptides. Int J Mol Sci. 2020;21(19):7047. doi:10.3390/ijms21197047. Xuan J, Feng W, Wang J, et al. Antimicrobial peptides for combating drug‐resistant bacterial infections. Drug Resist Updat. 2023;68:100954. doi:10.1016/j.drup.2023.100954. Zhang Q‐Y, Yan Z‐B, Meng Y‐M, et al. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res. 2021;8(1):48. doi:10.1186/s40779‐021‐00343‐2. Brandenburg K, Heinbockel L, Correa W, Lohner K. Peptides with dual mode of action: killing bacteria and preventing endotoxin‐induced sepsis. Biochim Biophys Acta (BBA) ‐ Biomembranes. 2016;1858(5):971‐979. doi:10.1016/j.bbamem.2016.01.011. Zhang S, Zhou X, Liu T, Huang Y, Li J. The effects of peptide Mel4‐coated titanium plates on infection rabbits after internal fixation of open fractures. Arch Orthop Trauma Surg. 2022;142(5):729‐734. doi:10.1007/s00402‐020‐03694‐y. Huan Y, Kong Q, Mou H, Yi H. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol. 2020;11:582779. doi:10.3389/fmicb.2020.582779. Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y. Antimicrobial peptides: an update on classifications and databases. Int J Mol Sci. 2021;22(21):11691. doi:10.3390/ijms222111691. de la Fuente‐Nunez C. Antibiotic discovery with machine learning. Nat Biotechnol. 2022;40(6):833‐834. doi:10.1038/s41587‐022‐01327‐w. Watkins K, Unnikrishnan M. New strategies and targets for antibacterial discovery. In: Drug discovery targeting drug‐resistant bacteria. Elsevier; 2020:249‐272. doi:10.1016/B978‐0‐12‐818480‐6.00009‐6. Kang S, Park S. Antimicrobial peptides: Therapeutic Potentials Taylor & Francis. Expert Rev Anti‐Infective Ther. 2014;12(12):1477‐1486. doi:10.1586/14787210.2014.976613. Dijksteel GS, Ulrich MMW, Middelkoop E, Boekema BKHL. Review: lessons learned from clinical trials using antimicrobial peptides (AMPs). Front Microbiol. 2021;12:616979. doi:10.3389/FMICB.2021.616979. Svenson J, Brandsdal B. … WS‐J of medicinal, 2007 undefined. In: Albumin binding of short cationic antimicrobial micropeptides and its influence on the in vitro bactericidal effect. Vol.50(14). ACS Publications; 2007:3334‐3339. doi:10.1021/jm0703542. Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol. 2016;6:194. doi:10.3389/FCIMB.2016.00194. Marr AK, Gooderham WJ, Hancock REW. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol. 2006;6(5):468‐472. Kalaiselvan P, Dutta D, Sharma S, Willcox M. The time‐course of retention of anti‐adhesion activity of Mel‐4 peptide coated contact lenses. Invest Ophthalmol Vis Sci. 2018;59(9):1766. Kalaiselvan P, Dutta D, Konda NV, et al. Effect of deposition and protease digestion on the ex vivo activity of antimicrobial peptide‐coated contact lenses. Nanomaterials. 2023;13(2):349. doi:10.3390/nano13020349. Falanga A, Lombardi L, Franci G, et al. Marine antimicrobial peptides: nature provides templates for the design of novel compounds against pathogenic bacteria. Int J Mol Sci. 2016;17(5):785. Mohamed MF, Abdelkhalek A, Seleem MN. Evaluation of short synthetic antimicrobial peptides for treatment of drug‐resistant and intracellular Staphylococcus aureus. Sci Rep. 2016;6:29707. doi:10.1038/SREP29707. Turner J, Cho Y, Dinh N‐N, Waring AJ, Lehrer RI. Activities of LL‐37, a cathelin‐associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother. 1998;42(9):2206‐2214. doi:10.1128/AAC.42.9.2206. Rasul R, Cole N, Balasubramanian D, Chen R, Kumar N, Willcox MDP. Interaction of the antimicrobial peptide melimine with bacterial membranes. Int J Antimicrob Agents. 2010;35(6):566‐572. doi:10.1016/j.ijantimicag.2010.02.005. CTG Lab ‐ NCBI. Study Record (Friulimicin_B)|ClinicalTrials.gov. Martin‐Loeches I, Dale GE, Torres A. Murepavadin: a new antibiotic class in the pipeline. Expert Rev Anti Infect Ther. 2018;16(4):259‐268. doi:10.1080/14787210.2018.1441024. BioSpace. Polyphor temporarily halts enrollment in the phase III studies of murepavadin for the treatment of patients with nosocomial pneumonia. Huang HW. Action of antimicrobial peptides: two‐state model. Biochemistry. 2000;39(29):8347‐8352. doi:10.1021/bi000946l. Kohn E, Shirley D, Arotsky L, et al. Role of cationic side chains in the antimicrobial activity of C18G. Molecules. 2018;23(2):329. doi:10.3390/molecules23020329. Makhlynets OV, Caputo GA. Characteristics and therapeutic applications of antimicrobial peptides. Biophys Rev. 2021;2(1):1‐12. doi:10.1063/5.0035731. Malina A, Shai Y. Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of a cationic biologically inactive peptide. Biochem J. 2005;390(3):695‐702. Molina J, Cordero E, Pachón J. New information about the polymyxin/colistin class of antibiotics. Expert Opin Pharmacother. 2009;10(17):2811‐2828. Anaya‐López JL, López‐Meza JE, Ochoa‐Zarzosa A. Bacterial resistance to cationic antimicrobial peptides. Crit Rev Microbiol. 2013;39(2):180‐195. Andersson DI, Hughes D, Kubicek‐Sutherland JZ. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat. 2016;26:43‐57. Abdi M, Mirkalantari S, Amirmozafari N. Bacterial resistance to antimicrobial peptides. J Pept Sci. 2019;25(11):3210. doi:10.1002/psc.3210. Fabretti F, Theilacker C, Baldassarri L, et al. Alanine esters of enterococcal lipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides. Infect Immun. 2006;74(7):4164‐4171. doi:10.1128/IAI.00111‐06. Poyart C, Pellegrini E, Marceau M, et al. Attenuated virulence of streptococcus agalactiae deficient in D‐alanyl‐lipoteichoic acid is due to an increased susceptibility to defensins and phagocytic cells. Mol Microbiol. 2003;49(6):1615‐1625. doi:10.1046/j.1365‐2958.2003.03655.x. Abachin E, Poyart C, Pellegrini E, et al. Formation of D‐alanyl‐lipoteichoic acid is required for adhesion and virulence of listeria monocytogenes. Mol Microbiol. 2002;43(1):1‐14. doi:10.1046/j.1365‐2958.2002.02723.x. Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Götz F. Inactivation of the Dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem. 1999;274(13):8405‐8410. doi:10.1074/jbc.274.13.8405. Peschel A, Jack RW, Otto M, et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L‐lysine. J Exp Med. 2001;193(9):1067‐1076. Staubitz P, Neumann H, Schneider T, Wiedemann I, Peschel A. MprF‐mediated biosynthesis of lysylphosphatidylglycerol, an important determinant in staphylococcal defensin resistance. FEMS Microbiol Lett. 2004;231(1):67‐71. Banemann A, Deppisch H, Gross R. The lipopolysaccharide of Bordetella bronchiseptica acts as a protective shield against antimicrobial peptides. Infect Immun. 1998;66(12):5607‐5612. doi:10.1128/IAI.66.12.5607‐5612.1998. Farnaud S, Spiller C, Laura C M, et al. Interactions of lactoferricin‐derived peptides with LPS and antimicrobial activity. FEMS Microbiol Lett. 2004;233(2):193‐199. doi:10.1111/j.1574‐6968.2004.tb09482.x. Skurnik M, Venho R, Bengoechea J‐A, Moriyon I. The lipopolysaccharide outer core of Yersinia enterocolitica serotype O:3 is required for virulence and plays a role in outer membrane integrity. Mol Microbiol. 1999;31(5):1443‐1462. doi:10.1046/j.1365‐2958.1999.01285.x. Loutet SA, Flannagan RS, Kooi C, Sokol PA, Valvano MA. A complete lipopolysaccharide inner core oligosaccharide is required for resistance of Burkholderia cenocepacia to antimicrobial peptides and bacterial survival in vivo. J Bacteriol. 2006;188(6):2073‐2080. doi:10.1128/JB.188.6.2073‐2080.2006. Gazit E, Boman A, Boman HG, Shai Y. Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochemistry. 1995;34(36):11479‐11488. doi:10.1021/bi00036a021. Olsen I, Potempa J. Strategies for the inhibition of gingipains for the potential treatment of periodontitis and associated systemic diseases. J Oral Microbiol. 2014;6(1):24800. Rayman K, Malik N, Hurst A. Failure of nisin to inhibit outgrowth of clostridium botulinum in a model cured meat system. Appl Environ Microbiol. 1983;46(6):1450‐1452. doi:10.1128/aem.46.6.1450‐1452.1983. Alifax R, Chevalier R. Study of the nisinase produced by. Streptococcus thermophilus 1962. Kooy JS. Strains of Lactobacillus plantarum which inhibit the activity of the antibiotics produced by Streptococcus lactis. Ned Melk Zuiveltijdschr. 1952;6:323‐330. Draper LA, Cotter PD, Hill C, Ross RP. Lantibiotic resistance. Microbiol Mol Biol Rev. 2015;79(2):171‐191. Nyberg P, Rasmussen M, Björck L. Α2‐macroglobulin‐proteinase complexes protect Streptococcus pyogenes from killing by the antimicrobial peptide LL‐37. J Biol Chem. 2004;279(51):52820‐52823. doi:10.1074/jbc.C400485200. Nelson DC, Garbe J, Collin M. Cysteine proteinase SpeB from Streptococcus pyogenes—a potent modifier of immunologically important host and bacterial proteins. Biol Chem. 2011;392(12):1077‐1088. doi:10.1515/BC.2011.208. Zechini B, Versace I. Inhibitors of multidrug resistant efflux systems in bacteria. Recent Pat Antiinfect Drug Discov. 2009;4(1):37‐50. Nizet V. Antimicrobial peptide resistance mechanisms of human bacterial pathogens. Curr Issues Mol Biol. 2006;8(1):11‐26. Tzeng Y‐L, Ambrose KD, Zughaier S, et al. Cationic antimicrobial peptide resistance in Neisseria Meningitidis. J Bacteriol. 2005;187(15):5387‐5396. Jin T, Bokarewa M, Foster T, Mitchell J, Higgins J, Tarkowski A. Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol. 2004;172(2):1169‐1176. doi:10.4049/jimmunol.172.2.1169. Verma‐Gaur J, Qu Y, Harrison PF, et al. Integration of posttranscriptional gene networks into metabolic adaptation and biofilm maturation in Candida albicans. PLoS Genet. 2015;11(10):e1005590. doi:10.1371/journal.pgen.1005590. Melo MCR, Maasch JRMA, de la Fuente‐Nunez C. Accelerating antibiotic discovery through artificial intelligence. Commun Biol. 2021;4(1):1‐13. Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins MCL. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater. 2011;7(4):1431‐1440. doi:10.1016/J.ACTBIO.2010.11.005. Wade JD, Lin F, Hossain MA, Dawson RM. Chemical synthesis and biological evaluation of an antimicrobial peptide gonococcal growth inhibitor. Amino Acids. 2012;43(6):2279‐2283. Papo N, Oren Z, Pag U, Sahl H‐G, Shai Y. The consequence of sequence alteration of an amphipathic α‐helical antimicrobial peptide and its diastereomers. J Biol Chem. 2002;277(37):33913‐33921. Dathe M, Wieprecht T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta (BBA)‐Biomembranes. 1999;1462(1–2):71‐87. Porter SL, Coulter SM, Pentlavalli S, Thompson TP, Laverty G. Self‐assembling diphenylalanine peptide nanotubes selectively eradicate bacterial biofilm infection. Acta Biomater. 2018;77:96‐105. Schmidtchen A, Pasupuleti M, Malmsten M. Effect of hydrophobic modifications in antimicrobial peptides. Adv Colloid Interface Sci. 2014;205:265‐274. Chen HL, Su PY, Shih C. Improvement of in vivo antimicrobial activity of HBcARD peptides by D‐arginine replacement. Appl Microbiol Biotechnol. 2016;100(21):9125‐9132. doi:10.1007/S00253‐016‐7621‐6. Gunasekera S, Muhammad T, Strömstedt AA, Rosengren KJ, Göransson U. Backbone cyclization and dimerization of LL‐37‐derived peptides enhance antimicrobial activity and proteolytic stability. Front Microbiol. 2020;11:168. doi:10.3389/FMICB.2020.00168. Amerikova M. … IPE‐T‐B&, 2019 undefined. In: Antimicrobial Activity, Mechanism of Action, and Methods for Stabilisation of Defensins as New Therapeutic Agents. Vol.33(1). Taylor & Francis; 2019:671‐682. doi:10.1080/13102818.2019.1611385. Matsuzaki K. Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta (BBA)‐Biomembranes. 2009;1788(8):1687‐1692. Oren Z, Shai Y. Cyclization of a cytolytic amphipathic α‐helical peptide and its diastereomer: effect on structure, interaction with model membranes, and biological function. Biochemistry. 2000;39(20):6103‐6114. doi:10.1021/bi992408i. Dathe M, Nikolenko H, Klose J. Biochemistry MB‐, 2004 undefined cyclization increases the antimicrobial activity and selectivity of arginine‐and tryptophan‐containing hexapeptides. ACS Publications. 2004;43(28):9140‐9150. doi:10.1021/bi035948v. Avrahami D, Shai Y. Conjugation of a magainin analogue with lipophilic acids controls hydrophobicity, solution assembly, and cell selectivity. Biochemistry. 2002;41(7):2254‐2263. doi:10.1021/BI011549T. Chooi Y‐H, Tang Y. Adding the lipo to lipopeptides: do more with less. Chem Biol. 2010;17(8):791‐793. Kopeikin PM, Zharkova MS, Kolobov AA, et al. Caprine bactenecins as promising tools for developing new antimicrobial and antitumor drugs. Front Cell Infect Microbiol. 2020;10:552905. doi:10.3389/fcimb.2020.552905. Rosengren KJ, Göransson U, Otvos L Jr, Craik DJ. Cyclization of pyrrhocoricin retains structural elements crucial for the antimicrobial activity of the native peptide. Peptide Science. 2004;76(5):446‐458. doi:10.1002/bip.20159. Li W, Separovic F, O'Brien‐Simpson NM, Wade JD. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem Soc Rev. 2021;50(8):4932‐4973. doi:10.1039/docs01026j. Zhang L, Bulaj G. Converting peptides into drug leads by lipidation. Curr Med Chem. 2012;19(11):1602‐1618. doi:10.2174/092986712799945003. Opdenakker G, Rudd PM, Wormald M, Dwek RA, Van Damme J. Cells regulate the activities of cytokines by glycosylation. FASEB J. 1995;9(5):453‐457. doi:10.1096/FASEBJ.9.5.7896019. Maky MA, Ishibashi N, Zendo T, et al. Enterocin F4‐9, a novel O‐linked glycosylated bacteriocin. Appl Environ Microbiol. 2015;81(14):4819‐4826. doi:10.1128/AEM.00940‐15. Hoffmann R, Bulet P, Urge L, Otvös L. Range of activity and metabolic stability of synthetic antibacterial glycopeptides from insects. Biochim Biophys Acta (BBA) ‐ General Subjects. 1999;1426(3):459‐467. doi:10.1016/S0304‐4165(98)00169‐X. Bednarska NG, Wren BW, Willcocks SJ. The importance of the glycosylation of antimicrobial peptides: natural and synthetic approaches. Drug Discov Today. 2017;22(6):919‐926. doi:10.1016/j.drudis.2017.02.001. Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW. Membrane active antimicrobial peptides: translating mechanistic insights to design. Front Neurosci. 2017;11:73. doi:10.3389/FNINS.2017.00073/FULL. Liu SP, Zhou L, Lakshminarayanan R, Beuerman RW. Multivalent antimicrobial peptides as therapeutics: design principles and structural diversities. Int J Pept Res Ther. 2010;16(3):199‐213. doi:10.1007/s10989‐010‐9230‐z. Sadler K, Tam JP. Peptide dendrimers: applications and synthesis. Rev Mol Biotechnol. 2002;90(3–4):195‐229. Darbre T, Reymond J‐L. Peptide dendrimers as artificial enzymes, receptors, and drug‐delivery agents. Acc Chem Res. 2006;39(12):925‐934. doi:10.1021/ar050203y. Wan J, Alewood PF. Peptide‐decorated dendrimers and their bioapplications. Angew Chem Int Ed. 2016;55(17):5124‐5134. doi:10.1002/ANIE.201508428. Ramesh S, Govender T, Kruger HG, de la Torre BG, Albericio F. Short Antimicrobial peptides (SAMPs) as a class of extraordinary promising therapeutic agents. J Pept Sci. 2016;22(7):438‐451. doi:10.1002/psc.2894. Yang Z, He S, Wang J, et al. Rational design of short peptide variants by using Kunitzin‐RE, an amphibian‐derived bioactivity peptide, for acquired potent broad‐spectrum antimicrobial and improved therapeutic potential of commensalism coinfection of pathogens. J Med Chem. 2019;62(9):4586‐4605. doi:10.1021/acs.jmedchem.9b00149. Dutta D, Cole N, Kumar N, Willcox MDP. Broad spectrum antimicrobial activity of melimine covalently bound to contact lenses. Investig Opthalmol Vis Sci. 2013;54(1):175. doi:10.1167/iovs.12‐10989. Willcox MDP, Hume EBH, Aliwarga Y, Kumar N, Cole N. A novel cationic‐peptide coating for the prevention of microbial colonization on contact lenses. J Appl Microbiol. 2008;105(6):1817‐1825. doi:10.1111/j.1365‐2672.2008.03942.x. Adlakha S, Sharma A, Vaghasiya K, Ray E, Verma RK. Inhalation delivery of host defense peptides (HDP) using nano‐formulation strategies: a pragmatic approach for therapy of pulmonary ailments. Curr Protein Pept Sci. 2020;21(4):369‐378. doi:10.2174/1389203721666191231110453. Dutta D, Zhao T, Cheah KB, Holmlund L, Willcox MDP. Activity of a melimine derived peptide Mel4 against Stenotrophomonas, Delftia, Elizabethkingia, Burkholderia and biocompatibility as a contact lens coating. Cont Lens Anterior Eye. 2017;40(3):175‐183. doi:10.1016/j.clae.2017.01.002. Dutta D, Kamphuis B, Ozcelik B, et al. Development of silicone hydrogel antimicrobial contact lenses with Mel4 peptide coating. Optom Vis Sci. 2018;95(10):937‐946. doi:10.1097/OPX.0000000000001282. Andraö J, Monreal D, de Tejada GM, et al. Rationale for the design of shortened derivatives of the NK‐lysin‐derived antimicrobial peptide NK‐2 with improved activity against gram‐negative pathogens. J Biol Chem. 2007;282(20):14719‐14728. doi:10.1074/jbc.M608920200. Cristy S, Garsin D, Lorenz M. Short peptides derived from EntV inhibit virulence and biofilm formation in Candida albicans. Access Microbiol. 2021;3(12):154. doi:10.1099/acmi.cc2021.po0154. Wani NA, Singh G, Shankar S, Sharma A, Katoch M, Rai R. Short hybrid peptides incorporating β‐ and γ‐amino acids as antimicrobial agents. Peptides (NY). 2017;97:46‐53. doi:10.1016/j.peptides.2017.09.016. Horne WS, Johnson LM, Ketas TJ, et al. Structural and biological mimicry of protein surface recognition by α/β‐peptide foldamers. Proc Natl Acad Sci. 2009;106(35):14751‐14756. doi:10.1073/pnas.0902663106. Falciani C, Lozzi L, Pollini S, et al. Isomerization of an antimicrobial peptide broadens antimicrobial spectrum to gram‐positive bacterial pathogens. PLoS ONE. 2012;7(10):e46259. Maji K, Haldar D. 1‐(2‐Aminophenyl)‐1H‐1, 2, 3‐Triazole‐4‐carboxylic acid: activity against gram‐positive and gram‐negative pathogens including vibrio cholerae. R Soc Open Sci. 2017;4(10):170684. Lewis PN, Momany FA, Scheraga HA. Energy parameters in polypeptides. VI. Conformational energy analysis of the N‐acetyl N′‐methyl amides of the twenty naturally occurring amino acids. Isr J Chem. 1973;11(2–3):121‐152. Zhang Y, Baranov P, v, Atkins JF, Gladyshev VN. Pyrrolysine and selenocysteine use dissimilar decoding strategies. J Biol Chem. 2005;280(21):20740‐20751. Blaskovich MAT. Unusual amino acids in medicinal chemistry. J Med Chem. 2016;59(24):10807‐10836. Jariyarattanarach P, Klubthawee N, Wongchai M, Roytrakul S, Aunpad R. Author correction: novel D‐form of hybrid peptide (D‐AP19) rapidly kills Acinetobacter baumannii while tolerating proteolytic enzymes. Sci Rep. 2023;13(1):3154. doi:10.1038/s41598‐023‐30354‐z. Lu J, Xu H, Xia J, et al. D‐ and unnatural amino acid substituted antimicrobial peptides with improved proteolytic resistance and their proteolytic degradation characteristics. Front Microbiol. 2020;11:563030. doi:10.3389/fmicb.2020.563030. Tong X, Li J, Wei R, et al. RW‐BP100‐4D, a promising antimicrobial candidate with broad‐spectrum bactericidal activity. Front Microbiol. 2022;12:815980. doi:10.3389/fmicb.2021.815980. Dassanayake RP, Porter TJ, Samorodnitsky D, et al. Comparative study of antibacterial activity and stability of D‐enantiomeric and L‐enantiomeric bovine NK‐lysin peptide NK2A. Biochem Biophys Res Commun. 2022;595:76‐81. doi:10.1016/j.bbrc.2022.01.071. Oliva R, Chino M, Lombardi A, et al. Similarities and differences for membranotropic action of three unnatural antimicrobial peptides. J Pept Sci. 2020;26(8):e3270. doi:10.1002/psc.3270. Khara JS, Priestman M, Uhía I, et al. Unnatural amino acid analogues of membrane‐active helical peptides with anti‐mycobacterial activity and improved stability. J Antimicrob Chemother. 2016;71(8):2181‐2191. doi:10.1093/jac/dkw107. Lee T‐H, N. Hall K, Aguilar M‐I. Antimicrobial peptide structure and mechanism of action: A focus on the role of membrane structure. Curr Top Med Chem. 2015;16(1):25‐39. doi:10.2174/1568026615666150703121700. Gottler LM, Lee H‐Y, Shelburne CE, Ramamoorthy A, Marsh ENG. Using fluorous amino acids to modulate the biological activity of an antimicrobial peptide. Chembiochem. 2008;9(3):370‐373. doi:10.1002/cbic.200700643. Marsh ENG, Buer BC, Ramamoorthy A. Fluorine—a new element in the design of membrane‐active peptides. Mol Biosyst. 2009;5(10):1143. doi:10.1039/b909864j. Niemz A, Tirrell DA. Self‐association and membrane‐binding behavior of melittins containing Trifluoroleucine. J Am Chem Soc. 2001;123(30):7407‐7413. doi:10.1021/ja004351p. Jia F, Zhang Y, Wang J, et al. The effect of halogenation on the antimicrobial activity, antibiofilm activity, cytotoxicity and proteolytic stability of the antimicrobial peptide jelleine‐I. Peptides (NY). 2019;112:56‐66. doi:10.1016/j.peptides.2018.11.006. Steer D, Lew R, Perlmutter P, Smith A, Aguilar M‐I. β‐amino acids: versatile peptidomimetics. Curr Med Chem. 2002;9(8):811‐822. doi:10.2174/0929867024606759. du Vigneaud V, Ressler C, Swan CJM, Roberts CW, Katsoyannis PG, Gordon S. The synthesis of an octapeptide amide with the hormonal activity of oxytocin. J Am Chem Soc. 1953;75(19):4879‐4880. Merrifield RB. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc. 1963;85(14):2149‐2154. Sarojini V. Peptides: from Emil Fischer to Psa. New Zealand Inst Chem. 2013;79. Shin Y, Winans KA, Backes BJ, Kent SBH, Ellman JA, Bertozzi CR. Fmoc‐based synthesis of peptide‐αthioesters: application to the total chemical synthesis of a glycoprotein by native chemical ligation. J Am Chem Soc. 1999;121(50):11684‐11689. Pedersen SW, Armishaw CJ, Strømgaard K. Synthesis of peptides using tert‐butyloxycarbonyl (Boc) as the α‐amino protection group. In: Peptide synthesis and applications. Springer; 2013:65‐80. Shelton PT, Jensen KJ. Synthesis of C‐terminal peptide thioesters using Fmoc‐based solid‐phase peptide chemistry. In: Peptide Synthesis and Applications. Springer; 2013:119‐129. Chan W, White P. Fmoc Solid Phase Peptide Synthesis: A Practical Approach. Vol. 222. OUP Oxford; 1999. Fuscaldi LL, de Avelar Júnior JT, dos Santos DM, et al. Shortened derivatives from native antimicrobial peptide LyeTx I: in vitro and in vivo biological activity assessment. Exp Biol Med. 2021;246(4):414‐425. Tan A, Suzuki R, Yokoyama C, Yano S, Konno H. Antimicrobial activity and secondary structure of a novel peptide derived from ovalbumin. J Pept Sci. 2020;26(10):e3276. Santos‐Filho NA, Righetto GM, Pereira MR, et al. Effect of C‐terminal and N‐terminal dimerization and alanine scanning on antibacterial activity of the analogs of the peptide p‐BthTX‐I. Pept Sci. 2021;e24243. Tan A, Xu F, Yokoyama C, Yano S, Konno H. Design, synthesis, and evaluation of the self‐assembled antimicrobial peptides based on the ovalbumin‐derived peptide TK913. J Pept Sci. 2021;e3375. Jensen SK, Thomsen TT, Oddo A, Franzyk H, Løbner‐Olesen A, Hansen PR. Novel cyclic Lipopeptide antibiotics: effects of acyl chain length and position. Int J Mol Sci. 2020;21(16):5829. Chaudhuri D, Ganesan R, Vogelaar A, Dughbaj MA, Beringer PM, Camarero JA. Chemical synthesis of a potent antimicrobial peptide murepavadin using a tandem native chemical ligation/desulfurization reaction. J Org Chem. 2021;86(21):15242‐15246. Chauhan N, Singh Y. Self‐assembled Fmoc‐Arg‐Phe‐Phe peptide gels with highly potent bactericidal activities. ACS Biomater Sci Eng. 2020;6(10):5507‐5518. Nahhas AF, Chang R, Webster TJ. Introducing unnatural amino acids‐containing tripeptides as antimicrobial and anticancer agents. J Biomed Nanotechnol. 2018;14(5):987‐993. Li W, Sun Z, O'Brien‐Simpson NM, et al. The Nα‐methyl effect arginine of selective substitution D‐or on the activity of the proline‐rich antimicrobial peptide, Chex1‐Arg20. Antimicrob Anticancer Pept. 2018;5(1):1‐5. Gunasekaran P, Kim EY, Lee J, Ryu EK, Shin SY, Bang JK. Synthesis of Fmoc‐triazine amino acids and its application in the synthesis of short antibacterial peptidomimetics. Int J Mol Sci. 2020;21(10):3602. Godballe T, Nilsson LL, Petersen PD, Jenssen H. Antimicrobial β‐peptides and α‐peptoids. Chem Biol Drug Des. 2011;77(2):107‐116. doi:10.1111/j.1747‐0285.2010.01067.x. Prior A, Hori T, Fishman A, Sun D. Recent reports of solid‐phase cyclohexapeptide synthesis and applications. Molecules. 2018;23(6):1475. doi:10.3390/molecules23061475. Shepperson OA, Hanna CC, Brimble MA, Harris PWR, Cameron AJ. Total synthesis of novel antimicrobial β‐hairpin capitellacin via rapid flow‐based SPPS assembly and regioselective on‐resin disulfide cyclisation. Int J Pept Res Ther. 2022;28(1):32. doi:10.1007/s10989‐021‐10335‐4. Glossop HD, Sarojini V. Accessing the thiol toolbox: synthesis and structure–activity studies on fluoro‐thiol conjugated antimicrobial peptides. Bioconjug Chem. 2023;34(1):218‐227. doi:10.1021/acs.bioconjchem.2c00519. Pathak P, Zarandi MA, Zhou X, Jayawickramarajah J. Synthesis and applications of porphyrin‐biomacromolecule conjugates. Front Chem. 2021;9:764137. doi:10.3389/fchem.2021.764137. Nyembe PL, Ntombela T, Makatini MM. Review: structure‐activity relationship of antimicrobial peptoids. Pharmaceutics. 2023;15(5):1506. doi:10.3390/pharmaceutics15051506. Dissanayake S, He J, Yang SH, Brimble MA, Harris PWR, Cameron AJ. Flow‐based Fmoc‐SPPS preparation and SAR study of cathelicidin‐PY reveals selective antimicrobial activity. Molecules. 2023;28(4):1993. doi:10.3390/molecules28041993. Machado A, Fázio MA, Miranda A, Daffre S, Machini MT. Synthesis and properties of cyclic Gomesin and analogues. J Pept Sci. 2012;18(9):588‐598. doi:10.1002/psc.2439. Hou W, Zhang X, Liu C‐F. Progress in chemical synthesis of peptides and proteins. Trans Tianjin Univ. 2017;23(5):401‐419. doi:10.1007/s12209‐017‐0068‐8. Fang G, Wang J, Liu L. Convergent chemical synthesis of proteins by ligation of peptide hydrazides. Angew Chem. 2012;124(41):10493‐10496. Mao H, Hart SA, Schink A, Pollok BA. Sortase‐mediated protein ligation: A new method for protein engineering. J Am Chem Soc. 2004;126(9):2670‐2671. doi:10.1021/ja039915e. Han Y, Albericio F, Barany G. Occurrence and minimization of cysteine racemization during stepwise solid‐phase peptide synthesis1, 2. J Org Chem. 1997;62(13):4307‐4312. Zaher HS, Green R. Fidelity at the molecular level: lessons from protein synthesis. Cell. 2009;136(4):746‐762. Yang H, Zheng G, Peng X, Qiang B, Yuan J. D‐amino acids and D‐Tyr‐TRNATyr deacylase: stereospecificity of the translation machine revisited. FEBS Lett. 2003;552(2–3):95‐98. Böck A, Forchhammer K, Heider J, et al. Selenocysteine: the 21st amino acid. Mol Microbiol. 1991;5(3):515‐520. Srinivasan G, James CM, Krzycki JA. Pyrrolysine encoded by UAG in archaea: charging of a UAG‐decoding specialized TRNA. Science (1979). 2002;296(5572):1459‐1462. Wang L, Schultz PG. Expanding the genetic code. Chem Commun. 2002;1:1‐11. Gan F, Liu R, Wang F, Schultz PG. Functional replacement of histidine in proteins to generate noncanonical amino acid dependent organisms. J Am Chem Soc. 2018;140(11):3829‐3832. Garenne D, Haines MC, Romantseva EF, Freemont P, Strychalski EA, Noireaux V. Cell‐free gene expression. Nat Rev Methods Primers. 2021;1(1):49. doi:10.1038/s43586‐021‐00046‐x. Shimizu Y, Inoue A, Tomari Y, et al. Cell‐free translation reconstituted with purified components. Nat Biotechnol. 2001;19(8):751‐755. doi:10.1038/90802. Gregorio NE, Levine MZ, Oza JP. A user's guide to cell‐free protein synthesis. Methods Protoc. 2019;2(1):24. doi:10.3390/mps2010024. Karim AS, Jewett MC. A cell‐free framework for rapid biosynthetic pathway prototyping and enzyme discovery. Metab Eng. 2016;36:116‐126. doi:10.1016/j.ymben.2016.03.002. Gao W, Cho E, Liu Y, Lu Y. Advances and challenges in cell‐free incorporation of unnatural amino acids into proteins. Front Pharmacol. 2019;10:611. doi:10.3389/fphar.2019.00611. Dopp BJL, Tamiev DD, Reuel NF. Cell‐free supplement mixtures: elucidating the history and biochemical utility of additives used to support in vitro protein synthesis in E. Coli extract. Biotechnol Adv. 2019;37(1):246‐258. doi:10.1016/j.biotechadv.2018.12.006. Wu Y, Wang Z, Qiao X, Li J, Shu X, Qi H. Emerging methods for efficient and extensive incorporation of non‐canonical amino acids using cell‐free systems. Front Bioeng Biotechnol. 2020;8:863. doi:10.3389/fbioe.2020.00863. Shimizu Y, Kanamori T, Ueda T. Protein synthesis by pure translation systems. Methods. 2005;36(3):299‐304. doi:10.1016/j.ymeth.2005.04.006. Katoh T, Tajima K, Suga H. Consecutive elongation of D‐amino acids in translation. Cell Chem Biol. 2017;24(1):46‐54. doi:10.1016/j.chembiol.2016.11.012. Urbanek A, Elena‐Real CA, Popovic M, et al. Site‐specific isotopic labeling (SSIL): access to high‐resolution structural and dynamic information in low‐complexity proteins. Chembiochem. 2020;21(6):769‐775. doi:10.1002/cbic.201900583. Urbanek A, Morató A, Allemand F, et al. A general strategy to access structural information at atomic resolution in polyglutamine homorepeats. Angew Chem. 2018;130(14):3660‐3663. doi:10.1002/ange.201711530. Yamanaka K, Nakata H, Hohsaka T, Sisido M. Efficient synthesis of nonnatural mutants in Escherichia coli S30 in vitro protein synthesizing system. J Biosci Bioeng. 2004;97(6):395‐399. doi:10.1016/S1389‐1723(04)70225‐X. Fahmi NE, Dedkova L, Wang B, Golovine S, Hecht SM. Site‐specific incorporation of glycosylated serine and tyrosine derivatives into proteins. J Am Chem Soc. 2007;129(12):3586‐3597. doi:10.1021/ja067466n. Murakami H, Ohta A, Ashigai H, Suga H. A highly flexible TRNA acylation method for non‐natural polypeptide synthesis. Nat Methods. 2006;3(5):357‐359. doi:10.1038/nmeth877. Goto Y, Katoh T, Suga H. Flexizymes for genetic code reprogramming. Nat Protoc. 2011;6(6):779‐790. doi:10.1038/nprot.2011.331. Morimoto J, Hayashi Y, Iwasaki K, Suga H. Flexizymes: their evolutionary history and the origin of catalytic function. Acc Chem Res. 2011;44(12):1359‐1368. doi:10.1021/ar2000953. Singh‐Blom A, Hughes RA, Ellington AD. Residue‐specific incorporation of unnatural amino acids into proteins in vitro and in vivo. In: Samuelson JC, ed. Enzyme Engineering: Methods and Protocols. Humana Press; 2013:93‐114. doi:10.1007/978‐1‐62703‐293‐3_7. Wang Q, Parrish AR, Wang L. Expanding the genetic code for biological studies. Chem Biol. 2009;16(3):323‐336. Clomburg JM, Crumbley AM, Gonzalez R. Industrial biomanufacturing: the future of chemical production. Science (1979). 2017;355(6320):aag0804. doi:10.1126/science.aag0804. Hua X, Cao R, Zhou X, Xu Y. Integrated process for scalable bioproduction of glycolic acid from cell catalysis of ethylene glycol. Bioresour Technol. 2018;268:402‐407. doi:10.1016/j.biortech.2018.08.021. Munier R, Cohen GN. Incorporation of structural analogues of amino acids into bacterial proteins during their synthesis in vivo. Biochim Biophys Acta. 1959;31(2):378‐391. Richmond MH. The effect of amino acid analogues on growth and protein synthesis in microorganisms. Bacteriol Rev. 1962;26(4):398‐420. doi:10.1128/br.26.4.398‐420.1962. Nickling JH, Baumann T, Schmitt F‐J, et al. Antimicrobial peptides produced by selective pressure incorporation of non‐canonical amino acids. J Vis Exp. 2018;(135):57551. doi:10.3791/57551. Budisa N. Prolegomena to future experimental efforts on genetic code engineering by expanding its amino acid repertoire. Angew Chem Int Ed. 2004;43(47):6426‐6463. doi:10.1002/anie.200300646. Oldach F, Al Toma R, Kuthning A, et al. Congeneric Lantibiotics from ribosomal in vivo peptide synthesis with noncanonical amino acids. Angew Chem Int Ed. 2012;51(2):415‐418. doi:10.1002/anie.201106154. Narancic T. Non‐Canonical (Unusual) Amino acids as a toolbox for antimicrobial and anticancer peptide synthesis. In: Amino Acids, Peptides and Proteins. Vol.44; 2020:44. Baumann T, Nickling JH, Bartholomae M, Buivydas A, Kuipers OP, Budisa N. Prospects of in vivo incorporation of non‐canonical amino acids for the chemical diversification of antimicrobial peptides. Front Microbiol. 2017;8:124. doi:10.3389/fmicb.2017.00124. Kuthning A, Durkin P, Oehm S, Hoesl MG, Budisa N, Süssmuth RD. Towards biocontained cell factories: an evolutionarily adapted Escherichia coli strain produces a new‐to‐nature bioactive lantibiotic containing thienopyrrole‐alanine. Sci Rep. 2016;6(1):33447. doi:10.1038/srep33447. Du Y, Li L, Zheng Y, et al. Incorporation of non‐canonical amino acids into antimicrobial peptides: advances, challenges, and perspectives. Appl Environ Microbiol. 2022;88(23):e0161722. doi:10.1128/aem.01617‐22. Peden JF. Analysis of codon usage. 2000. Gouy M, Gautier C. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 1982;10(22):7055‐7074. doi:10.1093/nar/10.22.7055. Stansfield I, Jones KM, Tuite MF. The end in sight: terminating translation in eukaryotes. Trends Biochem Sci. 1995;20(12):489‐491. doi:10.1016/S0968‐0004(00)89113‐6. Liu DR, Magliery TJ, Pastrnak M, Schultz PG. Engineering a TRNA and aminoacyl‐TRNA synthetase for the site‐specific incorporation of unnatural amino acids into proteins in vivo. Proc Natl Acad Sci. 1997;94(19):10092‐10097. doi:10.1073/pnas.94.19.10092. Kuru E, Määttälä R‐M, Noguera K, et al. Release factor inhibiting antimicrobial peptides improve nonstandard amino acid incorporation in wild‐type bacterial cells. ACS Chem Biol. 2020;15(7):1852‐1861. doi:10.1021/acschembio.0c00055. Lobanov A v, Turanov AA, Hatfield DL, Gladyshev VN. Dual functions of codons in the genetic code. Crit Rev Biochem Mol Biol. 2010;45(4):257‐265. doi:10.3109/10409231003786094. Wang L, Schultz PG. A general approach for the generation of orthogonal TRNAs. Chem Biol. 2001;8(9):883‐890. doi:10.1016/S1074‐5521(01)00063‐1. Petropoulos AD, McDonald ME, Green R, Zaher HS. Distinct roles for release factor 1 and release factor 2 in translational quality control. J Biol Chem. 2014;289(25):17589‐17596. doi:10.1074/jbc.M114.564989. Ibba M, Hennecke H. Relaxing the substrate specificity of an aminoacyl‐TRNA synthetase allows in vitro and in vivo synthesis of proteins containing unnatural amino acids. FEBS Lett. 1995;364(3):272‐275. doi:10.1016/0014‐5793(95)00408‐2. Volker D, D MH, A NL, et al. Enlarging the amino acid set of Escherichia coli by infiltration of the valine coding pathway. Science (1979). 2001;292(5516):501‐504. doi:10.1126/science.1057718. Tang Y, Tirrell DA. Attenuation of the editing activity of the Escherichia coli leucyl‐TRNA synthetase allows incorporation of novel amino acids into proteins in vivo. Biochemistry. 2002;41(34):10635‐10645. doi:10.1021/bi026130x. Hoesl MG, Budisa N. Recent advances in genetic code engineering in Escherichia coli. Curr Opin Biotechnol. 2012;23(5):751‐757. doi:10.1016/j.copbio.2011.12.027. Hoesl MG, Budisa N. Expanding and engineering the genetic code in a single expression experiment. Chembiochem. 2011;12(4):552‐555. doi:10.1002/cbic.201000586. Ayyadurai N, Deepankumar K, Prabhu NS, Lee S, Yun H. A facile and efficient method for the incorporation of multiple unnatural amino acids into a single protein. Chem Commun. 2011;47(12):3430. doi:10.1039/c0cc04672h. Moore B, Persson BC, Nelson CC, Gesteland RF, Atkins JF. Quadruplet codons: implications for code expansion and the specification of translation step size. J Mol Biol. 2000;298(2):195‐209. doi:10.1006/jmbi.2000.3658. Anderson JC, Wu N, Santoro SW, Lakshman V, King DS, Schultz PG. An expanded genetic code with a functional quadruplet codon. Proc Natl Acad Sci. 2004;101(20):7566‐7571. doi:10.1073/pnas.0401517101. McMinn DL, Ogawa AK, Wu Y, Liu J, Schultz PG, Romesberg FE. Efforts toward expansion of the genetic alphabet: DNA polymerase recognition of a highly stable, self‐pairing hydrophobic base. J Am Chem Soc. 1999;121(49):11585‐11586. doi:10.1021/ja9925150. Ogawa AK, Wu Y, McMinn DL, Liu J, Schultz PG, Romesberg FE. Efforts toward the expansion of the genetic alphabet: information storage and replication with unnatural hydrophobic base pairs. J Am Chem Soc. 2000;122(14):3274‐3287. doi:10.1021/ja9940064. Melançon CE, Schultz PG. One plasmid selection system for the rapid evolution of aminoacyl‐TRNA synthetases. Bioorg Med Chem Lett. 2009;19(14):3845‐3847. doi:10.1016/j.bmcl.2009.04.007. Kuhn SM, Rubini M, Fuhrmann M, Theobald I, Skerra A. Engineering of an orthogonal aminoacyl‐TRNA synthetase for efficient incorporation of the non‐natural amino acid O‐methyl‐L‐tyrosine using fluorescence‐based bacterial cell sorting. J Mol Biol. 2010;404(1):70‐87. doi:10.1016/j.jmb.2010.09.001. Biddle W, Schmitt MA, Fisk JD. Evaluating sense codon reassignment with a simple fluorescence screen. Biochemistry. 2015;54(50):7355‐7364. doi:10.1021/acs.biochem.5b00870. Schwark D, Schmitt M, Fisk J. Dissecting the contribution of release factor interactions to amber stop codon reassignment efficiencies of the Methanocaldococcus jannaschii orthogonal pair. Genes (Basel). 2018;9(11):546. doi:10.3390/genes9110546. Thibodeaux GN, Liang X, Moncivais K, et al. Transforming a pair of orthogonal tRNA‐aminoacyl‐tRNA synthetase from archaea to function in mammalian cells. PLoS ONE. 2010;5(6):e11263. doi:10.1371/journal.pone.0011263. Perona JJ, Hadd A. Structural diversity and protein engineering of the aminoacyl‐tRNA synthetases. Biochemistry. 2012;51(44):8705‐8729. doi:10.1021/bi301180x. Krahn N, Tharp JM, Crnković A, Söll D. Chapter twelve ‐ engineering aminoacyl‐tRNA synthetases for use in synthetic biology. In: Ribas de Pouplana L, Kaguni LS, eds. The Enzymes. Vol.48. Academic Press; 2020:351‐395. doi:10.1016/bs.enz.2020.06.004. Rodriguez EA, Lester HA, Dougherty DA. Improved Amber and opal suppressor tRNAs for incorporation of unnatural amino acids in vivo. Part 1: minimizing misacylation. RNA. 2007;13(10):1703‐1714. doi:10.1261/rna.666807. Kleina LG, Masson J‐M, Normanly J, Abelson J, Miller JH. Construction of Escherichia coli amber suppressor tRNA genes: II. Synthesis of additional TRNA genes and improvement of suppressor efficiency. J Mol Biol. 1990;213(4):705‐717. doi:10.1016/S0022‐2836(05)80257‐8. Saida F, Uzan M, Odaert B, Bontems F. Expression of highly toxic genes in E. coli: special strategies and genetic tools. Curr Protein Pept Sci. 2006;7(1):47‐56. doi:10.2174/138920306775474095. Giacalone MJ, Gentile AM, Lovitt BT, Berkley NL, Gunderson CW, Surber MW. Toxic protein expression in Escherichia coli using a rhamnose‐based tightly regulated and tunable promoter system. Biotechniques. 2006;40(3):355‐364. doi:10.2144/000112112. Guan L, Liu Q, Li C, Zhang Y. Development of a fur‐dependent and tightly regulated expression system in Escherichia coli for toxic protein synthesis. BMC Biotechnol. 2013;13(1):25. doi:10.1186/1472‐6750‐13‐25. Dersch P, Fsihi H, Bremer E. Low‐copy‐number T7 vectors for selective gene expression and efficient protein overproduction in Escherichia coli. FEMS Microbiol Lett. 1994;123(1–2):19‐26. doi:10.1111/j.1574‐6968.1994.tb07195.x. Hoang TT, Ma Y, Stern RJ, McNeil MR, Schweizer HP. Construction and use of low‐copy number T7 expression vectors for purification of problem proteins: purification of mycobacterium tuberculosis RmlD and pseudomonas aeruginosa LasI and RhlI proteins, and functional analysis of purified RhlI. Gene. 1999;237(2):361‐371. doi:10.1016/S0378‐1119(99)00331‐5. Wang RF, Kushner SR. Construction of versatile low‐copy‐number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene. 1991;100:195‐199. doi:10.1016/0378‐1119(91)90366‐J. Crnković A, Vargas‐Rodriguez O, Söll D. Plasticity and constraints of tRNA aminoacylation define directed evolution of aminoacyl‐TRNA synthetases. Int J Mol Sci. 2019;20(9):2294. doi:10.3390/ijms20092294. Payne JW, Payne GM, Marshall NJ, Smith MW, Tyreman DR. Substrate specificity of the periplasmic dipeptide‐binding protein from Escherichia coli: experimental basis for the design of peptide prodrugs. Microbiology (N Y). 1999;145(10):2891‐2901. doi:10.1099/00221287‐145‐10‐2891. Luo X, Fu G, Wang RE, et al. Genetically encoding phosphotyrosine and its nonhydrolyzable analog in bacteria. Nat Chem Biol. 2017;13(8):845‐849. doi:10.1038/nchembio.2405. Kuenzl T, Sroka M, Srivastava P, Herdewijn P, Marlière P, Panke S. Overcoming the membrane barrier: recruitment of γ‐glutamyl transferase for intracellular release of metabolic cargo from peptide vectors. Metab Eng. 2017;39:60‐70. doi:10.1016/j.ymben.2016.10.016. Ko W, Kumar R, Kim S, Lee HS. Construction of bacterial cells with an active transport system for unnatural amino acids. ACS Synth Biol. 2019;8(5):1195‐1203. doi:10.1021/acssynbio.9b00076. Mehl RA, Anderson JC, Santoro SW, et al. Generation of a bacterium with a 21 amino acid genetic code. J Am Chem Soc. 2003;125(4):935‐939. doi:10.1021/ja0284153. Jung J‐E, Lee SY, Park H, et al. Genetic incorporation of unnatural amino acids biosynthesized from α‐keto acids by an aminotransferase. Chem Sci. 2014;5(5):1881. doi:10.1039/c3sc51617b. Sletta H, Nedal A, Aune TE V, et al. Broad‐host‐range plasmid PJB658 can be used for industrial‐level production of a secreted host‐toxic single‐chain antibody fragment in Escherichia coli. Appl Environ Microbiol. 2004;70(12):7033‐7039. doi:10.1128/AEM.70.12.7033‐7039.2004. Eisenhaber F, Persson B, Argos P. Protein structure prediction: recognition of primary, secondary, and tertiary structural features from amino acid sequence. Crit Rev Biochem Mol Biol. 1995;30(1):1‐94. doi:10.3109/10409239509085139. Guzzo A, v. The influence of amino acid sequence on protein structure. Biophys J. 1965;5(6):809‐822. doi:10.1016/S0006‐3495(65)86753‐4. Orengo CA, Todd AE, Thornton JM. From protein structure to function. Curr Opin Struct Biol. 1999;9(3):374‐382. doi:10.1016/S0959‐440X(99)80051‐7. Donnelly MI, Stevens PW, Stols L, et al. Expression of a highly toxic protein, Bax, in Escherichia coli by attachment of a leader peptide derived from the GroES cochaperone. Protein Expr Purif. 2001;22(3):422‐429. doi:10.1006/prep.2001.1442. Bommarius B, Sherman M, Kalman D, Cheng X. Production of anti‐microbial peptides. WO/2008/140582, November 20, 2008. Wang M, Zheng K, Lin J, et al. Rapid and efficient production of cecropin A antibacterial peptide in Escherichia coli by fusion with a self‐aggregating protein. BMC Biotechnol. 2018;18(1):62. doi:10.1186/s12896‐018‐0473‐7. Wang M, Lin J, Sun Q, Zheng K, Ma Y, Wang J. Design, expression, and characterization of a novel cecropin A‐derived peptide with high antibacterial activity. Appl Microbiol Biotechnol. 2019;103(4):1765‐1775. doi:10.1007/s00253‐018‐09592‐z. Sletta H, Tøndervik A, Hakvåg S, et al. The presence of N‐terminal secretion signal sequences leads to strong stimulation of the total expression levels of three tested medically important proteins during high‐cell‐density cultivations of Escherichia coli. Appl Environ Microbiol. 2007;73(3):906‐912. doi:10.1128/AEM.01804‐06. Kaushik S, He H, Dalbey RE. Bacterial signal peptides—navigating the journey of proteins. Front Physiol. 2022;13:933153. doi:10.3389/fphys.2022.933153. Ji S, Li W, Baloch AR, et al. Efficient biosynthesis of a cecropin A‐melittin mutant in bacillus subtilis WB700. Sci Rep. 2017;7(1):40587. doi:10.1038/srep40587. Lubelski J, Rink R, Khusainov R, Moll GN, Kuipers OP. Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell Mol Life Sci. 2008;65(3):455‐476. doi:10.1007/s00018‐007‐7171‐2. Sun B, Wibowo D, Sainsbury F, Zhao C‐X. Design and production of a novel antimicrobial fusion protein in Escherichia coli. Appl Microbiol Biotechnol. 2018;102(20):8763‐8772. doi:10.1007/s00253‐018‐9319‐4. Ingham AB, Moore RJ. Recombinant production of antimicrobial peptides in heterologous microbial systems. Biotechnol Appl Biochem. 2007;47(1):1. doi:10.1042/BA20060207. Kim H‐K, Chun D‐S, Kim J‐S, et al. Expression of the cationic antimicrobial peptide lactoferricin fused with the anionic peptide in Escherichia coli. Appl Microbiol Biotechnol. 2006;72(2):330‐338. doi:10.1007/s00253‐005‐0266‐5. Wang F, Fang X, Xu Z, Peng L, Cen P. Fusion expression of human beta‐defensin‐2 from multiple joined genes in Escherichia coli. Prep Biochem Biotechnol. 2004;34(3):215‐225. doi:10.1081/PB‐200026797. Boehm JC, Kingsbury WD, Perry D, Gilvarg C. The use of cysteinyl peptides to effect portage transport of sulfhydryl‐containing compounds in Escherichia coli. J Biol Chem. 1983;258(24):14850‐14855. doi:10.1016/S0021‐9258(17)43740‐9. Huang C‐J, Lin H, Yang X. Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol. 2012;39(3):383‐399. doi:10.1007/s10295‐011‐1082‐9. Tripathi NK, Shrivastava A. Scale up of biopharmaceuticals production. In: Nanoscale Fabrication, Optimization, Scale‐Up and Biological Aspects of Pharmaceutical Nanotechnology. Elsevier; 2018:133‐172. doi:10.1016/B978‐0‐12‐813629‐4.00004‐8. Kumar J, Chauhan AS, Shah RL, Gupta JA, Rathore AS. Amino acid supplementation for enhancing recombinant protein production in E. coli. Biotechnol Bioeng. 2020;117(8):2420‐2433. doi:10.1002/bit.27371. Schmidt FR. Optimization and scale up of industrial fermentation processes. Appl Microbiol Biotechnol. 2005;68(4):425‐435. doi:10.1007/s00253‐005‐0003‐0. Joachim M, Maguire N, Schäfer J, Gerlach D, Czermak P. Process intensification for an insect antimicrobial peptide elastin‐like polypeptide fusion produced in redox‐engineered Escherichia coli. Front Bioeng Biotechnol. 2019;7:150. doi:10.3389/fbioe.2019.00150. Toennies G, Homiller RP. The oxidation of amino acids by hydrogen peroxide in formic acid. J Am Chem Soc. 1942;64(12):3054‐3056. doi:10.1021/ja01264a518. |
| Contributed Indexing: | Keywords: antimicrobial peptides; bioincorporation; expanding genetic code; non‐canonical amino acids; recombinant protein production |
| Substance Nomenclature: | 0 (Amino Acids) 0 (Antimicrobial Peptides) 0 (Anti-Bacterial Agents) |
| Entry Date(s): | Date Created: 20240123 Date Completed: 20240502 Latest Revision: 20240522 |
| Update Code: | 20250114 |
| DOI: | 10.1002/psc.3560 |
| PMID: | 38262069 |
| Databáze: | MEDLINE |
Buďte první, kdo okomentuje tento záznam!
Full Text Finder
Nájsť tento článok vo Web of Science