A double encryption protection algorithm for stem cell bank privacy data based on improved AES and chaotic encryption technology.

Uložené v:
Podrobná bibliografia
Názov: A double encryption protection algorithm for stem cell bank privacy data based on improved AES and chaotic encryption technology.
Autori: Wang L; School of Electrical Engineering, Henan University of Technology, Zhengzhou, Asia, China., Wei X; School of Electrical Engineering, Henan University of Technology, Zhengzhou, Asia, China., Zhang Y; School of Information Science and Engineering, Henan University of Technology, Zhengzhou, Asia, China., Gao Y; Henan Zhengda Stem Cell Bank Technology Company Limited, Zhengzhou, Asia, China., Niu Q; School of Electrical Engineering, Henan University of Technology, Zhengzhou, Asia, China.
Zdroj: PloS one [PLoS One] 2023 Oct 25; Vol. 18 (10), pp. e0293418. Date of Electronic Publication: 2023 Oct 25 (Print Publication: 2023).
Spôsob vydávania: Journal Article; Research Support, Non-U.S. Gov't
Jazyk: English
Informácie o časopise: Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
Imprint Name(s): Original Publication: San Francisco, CA : Public Library of Science
Výrazy zo slovníka MeSH: Privacy* , Computer Security*, Algorithms ; Confidentiality ; DNA
Abstrakt: The unique infinite self-renewal ability and multidirectional differentiation potential of stem cells provide a strong support for the clinical treatment. In light of the growing demands for stem cell storage, how to ensure personal privacy security and comply with strict ethical supervision requirements is particularly important. In order to solve the problem of low security of traditional encryption algorithm, we proposed a double encryption protection (DEP) algorithm for stem cell bank privacy data based on improved AES and chaotic encryption technology. Firstly, we presented the hash value key decomposition algorithm, through the hash value dynamic coding, cyclic shift, conversion calculation to get the key of each subsystem in the built algorithm. Secondly, DEP algorithm for privacy data is realized with two level of encryption. The first level of encryption protection algorithm used AES as the main framework, adding dynamic coding and byte filling based on DNA coding, and carries out dynamic shift of rows and simplified mixing of columns. The second level of encryption protection algorithm conducted random encoding, operation, diffusion and decoding based on the results of our proposed sequence conversion algorithm. Finally, we raised two evaluation indexes, the number of characters change rate (NCCR) and the unified average change intensity of text (UACIT) to measure the sensitivity of encryption algorithms to changes in plain information. The experimental results of using DEP shown that the average values of histogram variance, information entropy, NCCR and UACIT are116.7883, 7.6688, 32.52% and 99.67%, respectively. DEP algorithm has a large key space, high key sensitivity, and enables dynamic encryption of private data in stem cell bank. The encryption scheme provided in this study ensures the security of the private information of stem cell bank in private cloud environment, and also provides a new method for the encryption of similar high confidentiality data.
(Copyright: © 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
Competing Interests: The authors have declared that no competing interests exist.
References: Cell Prolif. 2022 Aug;55(8):e13238. (PMID: 35522426)
Sensors (Basel). 2018 May 23;18(6):. (PMID: 29882865)
Br Med Bull. 2011;100:137-55. (PMID: 21852279)
Int J Hematol. 2007 Oct;86(3):269-74. (PMID: 17988995)
PLoS One. 2015 Oct 22;10(10):e0138457. (PMID: 26491967)
Sci Rep. 2022 Jul 28;12(1):12983. (PMID: 35902602)
Sci Rep. 2022 Oct 3;12(1):16523. (PMID: 36192488)
Opt Express. 2023 Jan 30;31(3):3927-3944. (PMID: 36785373)
Hum Gene Ther. 2018 Feb;29(2):188-196. (PMID: 29284300)
Comput Biol Med. 2023 May;157:106778. (PMID: 36934533)
Stem Cell Reports. 2021 Apr 13;16(4):997-1005. (PMID: 33740463)
J Cell Mol Med. 2010 Oct;14(10):2350-8. (PMID: 20825521)
Comput Intell Neurosci. 2022 Apr 19;2022:8424100. (PMID: 35498166)
Springerplus. 2016 Mar 08;5:289. (PMID: 27066326)
Science. 1994 Nov 11;266(5187):1021-4. (PMID: 7973651)
Stem Cells Int. 2011;2011:498132. (PMID: 21904557)
BMC Med Ethics. 2014 Feb 03;15:7. (PMID: 24485220)
PLoS One. 2022 Jul 12;17(7):e0267094. (PMID: 35819964)
Front Med (Lausanne). 2019 Jun 25;6:137. (PMID: 31294023)
Substance Nomenclature: 9007-49-2 (DNA)
Entry Date(s): Date Created: 20231025 Date Completed: 20231027 Latest Revision: 20231129
Update Code: 20250114
PubMed Central ID: PMC10681628
DOI: 10.1371/journal.pone.0293418
PMID: 37878640
Databáza: MEDLINE
Buďte prvý, kto okomentuje tento záznam!
Najprv sa musíte prihlásiť.