Neural representations for multi-context visuomotor adaptation and the impact of common representation on multi-task performance: a multivariate decoding approach.

Saved in:
Bibliographic Details
Title: Neural representations for multi-context visuomotor adaptation and the impact of common representation on multi-task performance: a multivariate decoding approach.
Authors: Song Y; Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea., Shin W; Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.; Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea., Kim P; Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea., Jeong J; Department of Brain and Cognitive Sciences, College of Life Science and Bioengineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
Source: Frontiers in human neuroscience [Front Hum Neurosci] 2023 Sep 26; Vol. 17, pp. 1221944. Date of Electronic Publication: 2023 Sep 26 (Print Publication: 2023).
Publication Type: Journal Article
Language: English
Journal Info: Publisher: Frontiers Research Foundation Country of Publication: Switzerland NLM ID: 101477954 Publication Model: eCollection Cited Medium: Print ISSN: 1662-5161 (Print) Linking ISSN: 16625161 NLM ISO Abbreviation: Front Hum Neurosci Subsets: PubMed not MEDLINE
Imprint Name(s): Original Publication: Lausanne, Switzerland : Frontiers Research Foundation, 2008-
Abstract: The human brain's remarkable motor adaptability stems from the formation of context representations and the use of a common context representation (e.g., an invariant task structure across task contexts) derived from structural learning. However, direct evaluation of context representations and structural learning in sensorimotor tasks remains limited. This study aimed to rigorously distinguish neural representations of visual, movement, and context levels crucial for multi-context visuomotor adaptation and investigate the association between representation commonality across task contexts and adaptation performance using multivariate decoding analysis with fMRI data. Here, we focused on three distinct task contexts, two of which share a rotation structure (i.e., visuomotor rotation contexts with -90° and +90° rotations, in which the mouse cursor's movement was rotated 90 degrees counterclockwise and clockwise relative to the hand-movement direction, respectively) and the remaining one does not (i.e., mirror-reversal context where the horizontal movement of the computer mouse was inverted). This study found that visual representations (i.e., visual direction) were decoded in the occipital area, while movement representations (i.e., hand-movement direction) were decoded across various visuomotor-related regions. These findings are consistent with prior research and the widely recognized roles of those areas. Task-context representations (i.e., either -90° rotation, +90° rotation, or mirror-reversal) were also distinguishable in various brain regions. Notably, these regions largely overlapped with those encoding visual and movement representations. This overlap suggests a potential intricate dependency of encoding visual and movement directions on the context information. Moreover, we discovered that higher task performance is associated with task-context representation commonality, as evidenced by negative correlations between task performance and task-context-decoding accuracy in various brain regions, potentially supporting structural learning. Importantly, despite limited similarities between tasks (e.g., rotation and mirror-reversal contexts), such association was still observed, suggesting an efficient mechanism in the brain that extracts commonalities from different task contexts (such as visuomotor rotations or mirror-reversal) at multiple structural levels, from high-level abstractions to lower-level details. In summary, while illuminating the intricate interplay between visuomotor processing and context information, our study highlights the efficiency of learning mechanisms, thereby paving the way for future exploration of the brain's versatile motor ability.
(Copyright © 2023 Song, Shin, Kim and Jeong.)
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
References: Behav Brain Res. 2010 Jan 20;206(2):157-65. (PMID: 19720086)
Trends Cogn Sci. 1998 Sep 1;2(9):338-47. (PMID: 21227230)
Neuron. 2018 Oct 24;100(2):490-509. (PMID: 30359611)
J Cogn Neurosci. 2007 Dec;19(12):2082-99. (PMID: 17892391)
Curr Biol. 2009 Feb 24;19(4):352-7. (PMID: 19217296)
Front Psychol. 2013 Aug 12;4:493. (PMID: 23964251)
Brain Connect. 2012;2(3):125-41. (PMID: 22642651)
J Neurosci. 2018 Mar 7;38(10):2569-2578. (PMID: 29437889)
Trends Cogn Sci. 2007 Jan;11(1):30-6. (PMID: 17134935)
Trends Cogn Sci. 2023 Jan;27(1):43-64. (PMID: 36435674)
Nat Rev Neurosci. 2011 Oct 27;12(12):739-51. (PMID: 22033537)
Front Syst Neurosci. 2008 Nov 24;2:4. (PMID: 19104670)
Neuroimage. 2007 May 1;35(4):1480-94. (PMID: 17376705)
Cogn Sci. 2010 Sep;34(7):1185-243. (PMID: 21564248)
Neuron. 2011 Nov 3;72(3):443-54. (PMID: 22078504)
Curr Opin Neurobiol. 2016 Apr;37:158-166. (PMID: 27012960)
Front Hum Neurosci. 2013 Jun 28;7:307. (PMID: 23874277)
Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):6010-5. (PMID: 20231475)
Neuropsychologia. 2010 Jan;48(2):529-35. (PMID: 19850055)
Neuroimage. 2009 Jan 1;44(1):83-98. (PMID: 18501637)
Nature. 2021 Dec;600(7889):489-493. (PMID: 34819674)
Cereb Cortex. 2009 Dec;19(12):2767-96. (PMID: 19329570)
Annu Rev Neurosci. 2023 Jul 10;46:233-258. (PMID: 36972611)
PLoS One. 2010 Jan 29;5(1):e8973. (PMID: 20126409)
Trends Neurosci. 2010 Aug;33(8):355-61. (PMID: 20573407)
Sci Rep. 2019 Mar 5;9(1):3504. (PMID: 30837493)
Nat Commun. 2021 Nov 18;12(1):6694. (PMID: 34795244)
J Neurophysiol. 2009 Sep;102(3):1868-79. (PMID: 19605614)
J Neurosci. 2013 Apr 24;33(17):7526-34. (PMID: 23616557)
Hum Neurobiol. 1984;2(4):235-44. (PMID: 6715208)
Neuropsychopharmacology. 2022 Jan;47(1):58-71. (PMID: 34389808)
Curr Biol. 2013 Aug 5;23(15):1427-31. (PMID: 23871239)
J Neurosci. 2015 Apr 29;35(17):6813-21. (PMID: 25926457)
Trends Cogn Sci. 2007 Jun;11(6):229-35. (PMID: 17475536)
Nat Neurosci. 2005 May;8(5):679-85. (PMID: 15852014)
Front Syst Neurosci. 2020 Apr 09;14:19. (PMID: 32327978)
Brain Res. 2007 Dec 14;1185:136-51. (PMID: 17996854)
Annu Rev Psychol. 2021 Jan 4;72:1-36. (PMID: 32928060)
J Neurophysiol. 2005 Jul;94(1):512-8. (PMID: 15716371)
Neuroimage. 2012 Jan 2;59(1):556-64. (PMID: 21839178)
Science. 2014 Jun 27;344(6191):1481-6. (PMID: 24876345)
Nat Commun. 2019 Dec 2;10(1):5489. (PMID: 31792198)
Trends Cogn Sci. 2011 Nov;15(11):527-36. (PMID: 22001867)
Nat Rev Neurosci. 2016 Aug;17(8):513-23. (PMID: 27256552)
Trends Cogn Sci. 2016 Jul;20(7):535-544. (PMID: 27261056)
J Neurosci. 2010 Nov 3;30(44):14817-23. (PMID: 21048140)
Neuroimage. 2018 Oct 15;180(Pt A):4-18. (PMID: 28782682)
Behav Brain Res. 2009 Sep 14;202(2):153-61. (PMID: 19463696)
Neuron. 2011 Nov 3;72(3):425-42. (PMID: 22078503)
PLoS Comput Biol. 2015 Aug 25;11(8):e1004369. (PMID: 26305797)
J Mot Behav. 2021;53(2):258-274. (PMID: 32194004)
Ciba Found Symp. 1984;107:64-82. (PMID: 6389041)
Brain. 1996 Aug;119 ( Pt 4):1183-98. (PMID: 8813282)
Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10687-92. (PMID: 18669663)
PLoS Comput Biol. 2014 Feb 27;10(2):e1003489. (PMID: 24586137)
Curr Opin Neurobiol. 2000 Oct;10(5):649-54. (PMID: 11084328)
Cerebellum. 2022 Apr;21(2):306-313. (PMID: 34080132)
J Mot Behav. 2012;44(6):445-53. (PMID: 23237467)
Curr Biol. 2004 Jul 13;14(13):R523-4. (PMID: 15242635)
Nat Neurosci. 2000 Nov;3 Suppl:1192-8. (PMID: 11127837)
Annu Rev Neurosci. 2006;29:105-34. (PMID: 16776581)
Front Neuroinform. 2015 Jan 06;8:88. (PMID: 25610393)
J Neurophysiol. 2004 Oct;92(4):2405-12. (PMID: 15381748)
Curr Opin Behav Sci. 2021 Apr;38:20-28. (PMID: 32864401)
Cereb Cortex. 2002 Sep;12(9):908-14. (PMID: 12183390)
Brain Res. 2009 Aug 18;1285:77-87. (PMID: 19505440)
J Physiol. 1959 Oct;148:574-91. (PMID: 14403679)
J Neurosci. 2013 Apr 10;33(15):6412-22. (PMID: 23575839)
Prog Brain Res. 2014;210:217-53. (PMID: 24916295)
Compr Physiol. 2019 Mar 14;9(2):613-663. (PMID: 30873583)
Trends Cogn Sci. 2008 May;12(5):201-8. (PMID: 18420448)
J Neurosci. 2006 Dec 20;26(51):13128-42. (PMID: 17182764)
Neuroimage. 2001 Jan;13(1):143-52. (PMID: 11133317)
Neuroimage. 2022 Jun;253:119080. (PMID: 35276369)
Contributed Indexing: Keywords: context representation; meta-learning; multi-task; multi-voxel pattern analysis (MVPA); sensorimotor adaptation; shared representation; structural learning
Entry Date(s): Date Created: 20231012 Latest Revision: 20231030
Update Code: 20250114
PubMed Central ID: PMC10562562
DOI: 10.3389/fnhum.2023.1221944
PMID: 37822708
Database: MEDLINE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=pmc&term=1662-5161[TA]+AND+1221944[PG]+AND+2023[PDAT]
    Name: FREE - PubMed Central (ISSN based link)
    Category: fullText
    Text: Full Text
    Icon: https://imageserver.ebscohost.com/NetImages/iconPdf.gif
    MouseOverText: Check this PubMed for the article full text.
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:cmedm&genre=article&issn=16625161&ISBN=&volume=17&issue=&date=20230926&spage=1221944&pages=1221944&title=Frontiers in human neuroscience&atitle=Neural%20representations%20for%20multi-context%20visuomotor%20adaptation%20and%20the%20impact%20of%20common%20representation%20on%20multi-task%20performance%3A%20a%20multivariate%20decoding%20approach.&aulast=Song%20Y&id=DOI:10.3389/fnhum.2023.1221944
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Y%20S
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: cmedm
DbLabel: MEDLINE
An: 37822708
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 0
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Neural representations for multi-context visuomotor adaptation and the impact of common representation on multi-task performance: a multivariate decoding approach.
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AU" term="%22Song+Y%22">Song Y</searchLink>; Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.<br /><searchLink fieldCode="AU" term="%22Shin+W%22">Shin W</searchLink>; Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.; Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.<br /><searchLink fieldCode="AU" term="%22Kim+P%22">Kim P</searchLink>; Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.<br /><searchLink fieldCode="AU" term="%22Jeong+J%22">Jeong J</searchLink>; Department of Brain and Cognitive Sciences, College of Life Science and Bioengineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <searchLink fieldCode="JN" term="%22101477954%22">Frontiers in human neuroscience</searchLink> [Front Hum Neurosci] 2023 Sep 26; Vol. 17, pp. 1221944. <i>Date of Electronic Publication: </i>2023 Sep 26 (<i>Print Publication: </i>2023).
– Name: TypePub
  Label: Publication Type
  Group: TypPub
  Data: Journal Article
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: TitleSource
  Label: Journal Info
  Group: Src
  Data: <i>Publisher: </i><searchLink fieldCode="PB" term="%22Frontiers+Research+Foundation%22">Frontiers Research Foundation </searchLink><i>Country of Publication: </i>Switzerland <i>NLM ID: </i>101477954 <i>Publication Model: </i>eCollection <i>Cited Medium: </i>Print <i>ISSN: </i>1662-5161 (Print) <i>Linking ISSN: </i><searchLink fieldCode="IS" term="%2216625161%22">16625161 </searchLink><i>NLM ISO Abbreviation: </i>Front Hum Neurosci <i>Subsets: </i>PubMed not MEDLINE
– Name: PublisherInfo
  Label: Imprint Name(s)
  Group: PubInfo
  Data: <i>Original Publication</i>: Lausanne, Switzerland : Frontiers Research Foundation, 2008-
– Name: Abstract
  Label: Abstract
  Group: Ab
  Data: The human brain's remarkable motor adaptability stems from the formation of context representations and the use of a common context representation (e.g., an invariant task structure across task contexts) derived from structural learning. However, direct evaluation of context representations and structural learning in sensorimotor tasks remains limited. This study aimed to rigorously distinguish neural representations of visual, movement, and context levels crucial for multi-context visuomotor adaptation and investigate the association between representation commonality across task contexts and adaptation performance using multivariate decoding analysis with fMRI data. Here, we focused on three distinct task contexts, two of which share a rotation structure (i.e., visuomotor rotation contexts with -90° and +90° rotations, in which the mouse cursor's movement was rotated 90 degrees counterclockwise and clockwise relative to the hand-movement direction, respectively) and the remaining one does not (i.e., mirror-reversal context where the horizontal movement of the computer mouse was inverted). This study found that visual representations (i.e., visual direction) were decoded in the occipital area, while movement representations (i.e., hand-movement direction) were decoded across various visuomotor-related regions. These findings are consistent with prior research and the widely recognized roles of those areas. Task-context representations (i.e., either -90° rotation, +90° rotation, or mirror-reversal) were also distinguishable in various brain regions. Notably, these regions largely overlapped with those encoding visual and movement representations. This overlap suggests a potential intricate dependency of encoding visual and movement directions on the context information. Moreover, we discovered that higher task performance is associated with task-context representation commonality, as evidenced by negative correlations between task performance and task-context-decoding accuracy in various brain regions, potentially supporting structural learning. Importantly, despite limited similarities between tasks (e.g., rotation and mirror-reversal contexts), such association was still observed, suggesting an efficient mechanism in the brain that extracts commonalities from different task contexts (such as visuomotor rotations or mirror-reversal) at multiple structural levels, from high-level abstractions to lower-level details. In summary, while illuminating the intricate interplay between visuomotor processing and context information, our study highlights the efficiency of learning mechanisms, thereby paving the way for future exploration of the brain's versatile motor ability.<br /> (Copyright © 2023 Song, Shin, Kim and Jeong.)
– Name: Abstract
  Label: Competing Interests
  Group: Ab
  Data: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
– Name: Ref
  Label: References
  Group: RefInfo
  Data: Behav Brain Res. 2010 Jan 20;206(2):157-65. (PMID: <searchLink fieldCode="PM" term="%2219720086%22">19720086)</searchLink><br />Trends Cogn Sci. 1998 Sep 1;2(9):338-47. (PMID: <searchLink fieldCode="PM" term="%2221227230%22">21227230)</searchLink><br />Neuron. 2018 Oct 24;100(2):490-509. (PMID: <searchLink fieldCode="PM" term="%2230359611%22">30359611)</searchLink><br />J Cogn Neurosci. 2007 Dec;19(12):2082-99. (PMID: <searchLink fieldCode="PM" term="%2217892391%22">17892391)</searchLink><br />Curr Biol. 2009 Feb 24;19(4):352-7. (PMID: <searchLink fieldCode="PM" term="%2219217296%22">19217296)</searchLink><br />Front Psychol. 2013 Aug 12;4:493. (PMID: <searchLink fieldCode="PM" term="%2223964251%22">23964251)</searchLink><br />Brain Connect. 2012;2(3):125-41. (PMID: <searchLink fieldCode="PM" term="%2222642651%22">22642651)</searchLink><br />J Neurosci. 2018 Mar 7;38(10):2569-2578. (PMID: <searchLink fieldCode="PM" term="%2229437889%22">29437889)</searchLink><br />Trends Cogn Sci. 2007 Jan;11(1):30-6. (PMID: <searchLink fieldCode="PM" term="%2217134935%22">17134935)</searchLink><br />Trends Cogn Sci. 2023 Jan;27(1):43-64. (PMID: <searchLink fieldCode="PM" term="%2236435674%22">36435674)</searchLink><br />Nat Rev Neurosci. 2011 Oct 27;12(12):739-51. (PMID: <searchLink fieldCode="PM" term="%2222033537%22">22033537)</searchLink><br />Front Syst Neurosci. 2008 Nov 24;2:4. (PMID: <searchLink fieldCode="PM" term="%2219104670%22">19104670)</searchLink><br />Neuroimage. 2007 May 1;35(4):1480-94. (PMID: <searchLink fieldCode="PM" term="%2217376705%22">17376705)</searchLink><br />Cogn Sci. 2010 Sep;34(7):1185-243. (PMID: <searchLink fieldCode="PM" term="%2221564248%22">21564248)</searchLink><br />Neuron. 2011 Nov 3;72(3):443-54. (PMID: <searchLink fieldCode="PM" term="%2222078504%22">22078504)</searchLink><br />Curr Opin Neurobiol. 2016 Apr;37:158-166. (PMID: <searchLink fieldCode="PM" term="%2227012960%22">27012960)</searchLink><br />Front Hum Neurosci. 2013 Jun 28;7:307. (PMID: <searchLink fieldCode="PM" term="%2223874277%22">23874277)</searchLink><br />Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):6010-5. (PMID: <searchLink fieldCode="PM" term="%2220231475%22">20231475)</searchLink><br />Neuropsychologia. 2010 Jan;48(2):529-35. (PMID: <searchLink fieldCode="PM" term="%2219850055%22">19850055)</searchLink><br />Neuroimage. 2009 Jan 1;44(1):83-98. (PMID: <searchLink fieldCode="PM" term="%2218501637%22">18501637)</searchLink><br />Nature. 2021 Dec;600(7889):489-493. (PMID: <searchLink fieldCode="PM" term="%2234819674%22">34819674)</searchLink><br />Cereb Cortex. 2009 Dec;19(12):2767-96. (PMID: <searchLink fieldCode="PM" term="%2219329570%22">19329570)</searchLink><br />Annu Rev Neurosci. 2023 Jul 10;46:233-258. (PMID: <searchLink fieldCode="PM" term="%2236972611%22">36972611)</searchLink><br />PLoS One. 2010 Jan 29;5(1):e8973. (PMID: <searchLink fieldCode="PM" term="%2220126409%22">20126409)</searchLink><br />Trends Neurosci. 2010 Aug;33(8):355-61. (PMID: <searchLink fieldCode="PM" term="%2220573407%22">20573407)</searchLink><br />Sci Rep. 2019 Mar 5;9(1):3504. (PMID: <searchLink fieldCode="PM" term="%2230837493%22">30837493)</searchLink><br />Nat Commun. 2021 Nov 18;12(1):6694. (PMID: <searchLink fieldCode="PM" term="%2234795244%22">34795244)</searchLink><br />J Neurophysiol. 2009 Sep;102(3):1868-79. (PMID: <searchLink fieldCode="PM" term="%2219605614%22">19605614)</searchLink><br />J Neurosci. 2013 Apr 24;33(17):7526-34. (PMID: <searchLink fieldCode="PM" term="%2223616557%22">23616557)</searchLink><br />Hum Neurobiol. 1984;2(4):235-44. (PMID: <searchLink fieldCode="PM" term="%226715208%22">6715208)</searchLink><br />Neuropsychopharmacology. 2022 Jan;47(1):58-71. (PMID: <searchLink fieldCode="PM" term="%2234389808%22">34389808)</searchLink><br />Curr Biol. 2013 Aug 5;23(15):1427-31. (PMID: <searchLink fieldCode="PM" term="%2223871239%22">23871239)</searchLink><br />J Neurosci. 2015 Apr 29;35(17):6813-21. (PMID: <searchLink fieldCode="PM" term="%2225926457%22">25926457)</searchLink><br />Trends Cogn Sci. 2007 Jun;11(6):229-35. (PMID: <searchLink fieldCode="PM" term="%2217475536%22">17475536)</searchLink><br />Nat Neurosci. 2005 May;8(5):679-85. (PMID: <searchLink fieldCode="PM" term="%2215852014%22">15852014)</searchLink><br />Front Syst Neurosci. 2020 Apr 09;14:19. (PMID: <searchLink fieldCode="PM" term="%2232327978%22">32327978)</searchLink><br />Brain Res. 2007 Dec 14;1185:136-51. (PMID: <searchLink fieldCode="PM" term="%2217996854%22">17996854)</searchLink><br />Annu Rev Psychol. 2021 Jan 4;72:1-36. (PMID: <searchLink fieldCode="PM" term="%2232928060%22">32928060)</searchLink><br />J Neurophysiol. 2005 Jul;94(1):512-8. (PMID: <searchLink fieldCode="PM" term="%2215716371%22">15716371)</searchLink><br />Neuroimage. 2012 Jan 2;59(1):556-64. (PMID: <searchLink fieldCode="PM" term="%2221839178%22">21839178)</searchLink><br />Science. 2014 Jun 27;344(6191):1481-6. (PMID: <searchLink fieldCode="PM" term="%2224876345%22">24876345)</searchLink><br />Nat Commun. 2019 Dec 2;10(1):5489. (PMID: <searchLink fieldCode="PM" term="%2231792198%22">31792198)</searchLink><br />Trends Cogn Sci. 2011 Nov;15(11):527-36. (PMID: <searchLink fieldCode="PM" term="%2222001867%22">22001867)</searchLink><br />Nat Rev Neurosci. 2016 Aug;17(8):513-23. (PMID: <searchLink fieldCode="PM" term="%2227256552%22">27256552)</searchLink><br />Trends Cogn Sci. 2016 Jul;20(7):535-544. (PMID: <searchLink fieldCode="PM" term="%2227261056%22">27261056)</searchLink><br />J Neurosci. 2010 Nov 3;30(44):14817-23. (PMID: <searchLink fieldCode="PM" term="%2221048140%22">21048140)</searchLink><br />Neuroimage. 2018 Oct 15;180(Pt A):4-18. (PMID: <searchLink fieldCode="PM" term="%2228782682%22">28782682)</searchLink><br />Behav Brain Res. 2009 Sep 14;202(2):153-61. (PMID: <searchLink fieldCode="PM" term="%2219463696%22">19463696)</searchLink><br />Neuron. 2011 Nov 3;72(3):425-42. (PMID: <searchLink fieldCode="PM" term="%2222078503%22">22078503)</searchLink><br />PLoS Comput Biol. 2015 Aug 25;11(8):e1004369. (PMID: <searchLink fieldCode="PM" term="%2226305797%22">26305797)</searchLink><br />J Mot Behav. 2021;53(2):258-274. (PMID: <searchLink fieldCode="PM" term="%2232194004%22">32194004)</searchLink><br />Ciba Found Symp. 1984;107:64-82. (PMID: <searchLink fieldCode="PM" term="%226389041%22">6389041)</searchLink><br />Brain. 1996 Aug;119 ( Pt 4):1183-98. (PMID: <searchLink fieldCode="PM" term="%228813282%22">8813282)</searchLink><br />Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10687-92. (PMID: <searchLink fieldCode="PM" term="%2218669663%22">18669663)</searchLink><br />PLoS Comput Biol. 2014 Feb 27;10(2):e1003489. (PMID: <searchLink fieldCode="PM" term="%2224586137%22">24586137)</searchLink><br />Curr Opin Neurobiol. 2000 Oct;10(5):649-54. (PMID: <searchLink fieldCode="PM" term="%2211084328%22">11084328)</searchLink><br />Cerebellum. 2022 Apr;21(2):306-313. (PMID: <searchLink fieldCode="PM" term="%2234080132%22">34080132)</searchLink><br />J Mot Behav. 2012;44(6):445-53. (PMID: <searchLink fieldCode="PM" term="%2223237467%22">23237467)</searchLink><br />Curr Biol. 2004 Jul 13;14(13):R523-4. (PMID: <searchLink fieldCode="PM" term="%2215242635%22">15242635)</searchLink><br />Nat Neurosci. 2000 Nov;3 Suppl:1192-8. (PMID: <searchLink fieldCode="PM" term="%2211127837%22">11127837)</searchLink><br />Annu Rev Neurosci. 2006;29:105-34. (PMID: <searchLink fieldCode="PM" term="%2216776581%22">16776581)</searchLink><br />Front Neuroinform. 2015 Jan 06;8:88. (PMID: <searchLink fieldCode="PM" term="%2225610393%22">25610393)</searchLink><br />J Neurophysiol. 2004 Oct;92(4):2405-12. (PMID: <searchLink fieldCode="PM" term="%2215381748%22">15381748)</searchLink><br />Curr Opin Behav Sci. 2021 Apr;38:20-28. (PMID: <searchLink fieldCode="PM" term="%2232864401%22">32864401)</searchLink><br />Cereb Cortex. 2002 Sep;12(9):908-14. (PMID: <searchLink fieldCode="PM" term="%2212183390%22">12183390)</searchLink><br />Brain Res. 2009 Aug 18;1285:77-87. (PMID: <searchLink fieldCode="PM" term="%2219505440%22">19505440)</searchLink><br />J Physiol. 1959 Oct;148:574-91. (PMID: <searchLink fieldCode="PM" term="%2214403679%22">14403679)</searchLink><br />J Neurosci. 2013 Apr 10;33(15):6412-22. (PMID: <searchLink fieldCode="PM" term="%2223575839%22">23575839)</searchLink><br />Prog Brain Res. 2014;210:217-53. (PMID: <searchLink fieldCode="PM" term="%2224916295%22">24916295)</searchLink><br />Compr Physiol. 2019 Mar 14;9(2):613-663. (PMID: <searchLink fieldCode="PM" term="%2230873583%22">30873583)</searchLink><br />Trends Cogn Sci. 2008 May;12(5):201-8. (PMID: <searchLink fieldCode="PM" term="%2218420448%22">18420448)</searchLink><br />J Neurosci. 2006 Dec 20;26(51):13128-42. (PMID: <searchLink fieldCode="PM" term="%2217182764%22">17182764)</searchLink><br />Neuroimage. 2001 Jan;13(1):143-52. (PMID: <searchLink fieldCode="PM" term="%2211133317%22">11133317)</searchLink><br />Neuroimage. 2022 Jun;253:119080. (PMID: <searchLink fieldCode="PM" term="%2235276369%22">35276369)</searchLink>
– Name: SubjectMinor
  Label: Contributed Indexing
  Group:
  Data: <i>Keywords: </i>context representation; meta-learning; multi-task; multi-voxel pattern analysis (MVPA); sensorimotor adaptation; shared representation; structural learning
– Name: DateEntry
  Label: Entry Date(s)
  Group: Date
  Data: <i>Date Created: </i>20231012 <i>Latest Revision: </i>20231030
– Name: DateUpdate
  Label: Update Code
  Group: Date
  Data: 20250114
– Name: PubmedCentralID
  Label: PubMed Central ID
  Group: ID
  Data: PMC10562562
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.3389/fnhum.2023.1221944
– Name: AN
  Label: PMID
  Group: ID
  Data: 37822708
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=cmedm&AN=37822708
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.3389/fnhum.2023.1221944
    Languages:
      – Code: eng
        Text: English
    PhysicalDescription:
      Pagination:
        StartPage: 1221944
    Titles:
      – TitleFull: Neural representations for multi-context visuomotor adaptation and the impact of common representation on multi-task performance: a multivariate decoding approach.
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Song Y
      – PersonEntity:
          Name:
            NameFull: Shin W
      – PersonEntity:
          Name:
            NameFull: Kim P
      – PersonEntity:
          Name:
            NameFull: Jeong J
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 26
              M: 09
              Text: 2023 Sep 26
              Type: published
              Y: 2023
          Identifiers:
            – Type: issn-print
              Value: 1662-5161
          Numbering:
            – Type: volume
              Value: 17
          Titles:
            – TitleFull: Frontiers in human neuroscience
              Type: main
ResultId 1