Induction of resistance mechanisms in Rhodotorula toruloides for growth in sugarcane hydrolysate with high inhibitor content.
Saved in:
| Title: | Induction of resistance mechanisms in Rhodotorula toruloides for growth in sugarcane hydrolysate with high inhibitor content. |
|---|---|
| Authors: | Lopes HJS; Department of Materials and Bioprocess Engineering, School of Chemical Engineering, State University of Campinas, Campinas, SP, 13083-852, Brazil., Bonturi N; Institute of Technology, University of Tartu, Tartu, Estonia., Miranda EA; Department of Materials and Bioprocess Engineering, School of Chemical Engineering, State University of Campinas, Campinas, SP, 13083-852, Brazil. everson@unicamp.br. |
| Source: | Applied microbiology and biotechnology [Appl Microbiol Biotechnol] 2021 Dec; Vol. 105 (24), pp. 9261-9272. Date of Electronic Publication: 2021 Nov 11. |
| Publication Type: | Journal Article |
| Language: | English |
| Journal Info: | Publisher: Springer International Country of Publication: Germany NLM ID: 8406612 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0614 (Electronic) Linking ISSN: 01757598 NLM ISO Abbreviation: Appl Microbiol Biotechnol Subsets: MEDLINE |
| Imprint Name(s): | Original Publication: Berlin ; New York : Springer International, c1984- |
| MeSH Terms: | Rhodotorula* , Saccharum*, Biomass ; Xylose |
| Abstract: | The oleaginous yeast Rhodotorula toruloides is a potential lipid producer for biodiesel production. However, this yeast shows growth inhibition due to harmful compounds when cultivated in hemicellulose hydrolysate. Here, we present a comparative analysis of colony selection and heterologous adaptive laboratory enhancement (ALE) strategies for obtaining robust strains. We implemented these ALE strategies for R. toruloides in a culture medium containing sugarcane hemicellulose hydrolysate. Our comparison study showed that the strain obtained with heterogeneous ALE strategy (Rth) reached a µ (© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.) |
| References: | Almeida JRM, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349. https://doi.org/10.1002/jctb.1676. (PMID: 10.1002/jctb.1676) Bennett AF, Lenski RE (2007) An experimental test of evolutionary trade-offs during temperature adaptation. Proc Natl Acad Sci 104:8649 LP – 8654. https://doi.org/10.1073/pnas.0702117104. (PMID: 10.1073/pnas.0702117104) Berry DB, Gasch AP (2008) Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol Biol Cell 19:4580–4587. https://doi.org/10.1091/mbc.e07-07-0680. (PMID: 10.1091/mbc.e07-07-0680187534082575158) Bonny AR, Kochanowski K, Diether M, El-Samad H (2021) Stress-induced growth rate reduction restricts metabolic resource utilization to modulate osmo-adaptation time. Cell Rep 34:108854. https://doi.org/10.1016/j.celrep.2021.108854. (PMID: 10.1016/j.celrep.2021.10885433730573) Bonturi N, Crucello A, Viana JAC, Miranda EA (2017) Microbial oil production in sugarcane bagasse hemicellulosic hydrolysate without nutrient supplementation by a Rhodosporidium toruloides adapted strain. Process Biochem 57:16–25. https://doi.org/10.1016/j.procbio.2017.03.007. (PMID: 10.1016/j.procbio.2017.03.007) Brandenburg J, Blomqvist J, Pickova J, Bonturi N, Sandgren M, Passoth V (2016) Lipid production from hemicellulose with Lipomyces starkeyi in a pH regulated fed-batch cultivation. Yeast 33:451–462. https://doi.org/10.1002/yea.3160. (PMID: 10.1002/yea.316026945827) Cakar ZP, Seker UOS, Tamerler C, Sonderegger M, Sauer U (2005) Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res 5:569–578. https://doi.org/10.1016/j.femsyr.2004.10.010. (PMID: 10.1016/j.femsyr.2004.10.01015780656) Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323–337. https://doi.org/10.1091/mbc.12.2.323. (PMID: 10.1091/mbc.12.2.3231117941830946) Choe D, Lee JH, Yoo M, Hwang S, Sung BH, Cho S, Palsson B, Kim SC, Cho B-K (2019) Adaptive laboratory evolution of a genome-reduced Escherichia coli. Nat Commun 10:935. https://doi.org/10.1038/s41467-019-08888-6. (PMID: 10.1038/s41467-019-08888-6308043356389913) Coelho MA, Rosa A, Rodrigues N, Fonseca Á, Gonçalves P (2008) Identification of mating type genes in the bipolar basidiomycetous yeast Rhodosporidium toruloides: First insight into the MAT locus structure of the Sporidiobolales. Eukaryot Cell 7:1053–1061. https://doi.org/10.1128/EC.00025-08. (PMID: 10.1128/EC.00025-08184080572446649) da Silveira FA, de Oliveira Soares DL, Bang KW, Balbino TR, de Moura Ferreira MA, Diniz RHS, de Lima LA, Brandão MM, Villas-Bôas SG, da Silveira WB (2020) Assessment of ethanol tolerance of Kluyveromyces marxianus CCT 7735 selected by adaptive laboratory evolution. Appl Microbiol Biotechnol 104:7483–7494. https://doi.org/10.1007/s00253-020-10768-9. (PMID: 10.1007/s00253-020-10768-932676708) Díaz T, Fillet S, Campoy S, Vázquez R, Viña J, Murillo J, Adrio JL (2018) Combining evolutionary and metabolic engineering in Rhodosporidium toruloides for lipid production with non-detoxified wheat straw hydrolysates. Appl Microbiol Biotechnol 102:3287–3300. https://doi.org/10.1007/s00253-018-8810-2. (PMID: 10.1007/s00253-018-8810-229464324) Donot F, Fontana A, Baccou JC, Strub C, Schorr-Galindo S (2014) Single cell oils (SCOs) from oleaginous yeasts and moulds: Production and genetics. Biomass Bioenerg 68:135–150. https://doi.org/10.1016/J.BIOMBIOE.2014.06.016. (PMID: 10.1016/J.BIOMBIOE.2014.06.016) Dragosits M, Mattanovich D (2013) Adaptive laboratory evolution – principles and applications for biotechnology. Microb Cell Fact 12:64. https://doi.org/10.1186/1475-2859-12-64. (PMID: 10.1186/1475-2859-12-64238157493716822) Dragosits M, Mozhayskiy V, Quinones-Soto S, Park J, Tagkopoulos I (2013) Evolutionary potential, cross-stress behavior and the genetic basis of acquired stress resistance in Escherichia coli. Mol Syst Biol 9:643. https://doi.org/10.1038/msb.2012.76. (PMID: 10.1038/msb.2012.76233854833588905) Fei Q, Chang HN, Shang L, Choi J, Kim N, Kang J (2011) The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresour Technol 102:2695–2701. https://doi.org/10.1016/j.biortech.2010.10.141. (PMID: 10.1016/j.biortech.2010.10.14121134744) Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509. https://doi.org/10.1016/S0021-9258(18)64849-5. (PMID: 10.1016/S0021-9258(18)64849-513428781) Greetham D, Hart AJ, Tucker GA (2016) Presence of low concentrations of acetic acid improves yeast tolerance to hydroxymethylfurfural (HMF) and furfural. Biomass Bioenerg 85:53–60. https://doi.org/10.1016/j.biombioe.2015.11.026. (PMID: 10.1016/j.biombioe.2015.11.026) Ho Y-H, Shishkova E, Hose J, Coon JJ, Gasch AP (2018) Decoupling yeast cell division and stress defense implicates mRNA repression in translational reallocation during stress. Curr Biol 28:2673-2680.e4. https://doi.org/10.1016/j.cub.2018.06.044. (PMID: 10.1016/j.cub.2018.06.044300785616132260) Hodge DB, Andersson C, Berglund KA, Rova U (2009) Detoxification requirements for bioconversion of softwood dilute acid hydrolyzates to succinic acid. Enzyme Microb Technol 44:309–316. https://doi.org/10.1016/J.ENZMICTEC.2008.11.007. (PMID: 10.1016/J.ENZMICTEC.2008.11.007) Hohmann S, Mager WH (2003) Yeast Stress Responses, 1st edn. Springer Berlin Heidelberg, Berlin, Heidelberg. (PMID: 10.1007/3-540-45611-2) Honigberg SM (2011) Cell signals, cell contacts, and the organization of yeast communities. Eukaryot Cell 10:466–473. https://doi.org/10.1128/EC.00313-10. (PMID: 10.1128/EC.00313-10212969163127636) International Energy Outlook 2018. https://www.eia.gov/outlooks/ieo/ . Accessed 4 Sep 2018. Jagtap SS, Rao CV (2018) Production of D-arabitol from D-xylose by the oleaginous yeast Rhodosporidium toruloides IFO0880. Appl Microbiol Biotechnol 102:143–151. https://doi.org/10.1007/s00253-017-8581-1. (PMID: 10.1007/s00253-017-8581-129127468) Kitcha S, Cheirsilp B (2011) Screening of oleaginous yeasts and optimization for lipid production using crude glycerol as a carbon source. Energy Procedia 9:274–282. https://doi.org/10.1016/J.EGYPRO.2011.09.029. (PMID: 10.1016/J.EGYPRO.2011.09.029) Koutinas AA, Chatzifragkou A, Kopsahelis N, Papanikolaou S, Kookos IK (2014) Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. Fuel 116:566–577. https://doi.org/10.1016/J.FUEL.2013.08.045. (PMID: 10.1016/J.FUEL.2013.08.045) Kumar S, Kushwaha H, Bachhawat AK, Raghava GPS, Ganesan K (2012) Genome sequence of the oleaginous red yeast Rhodosporidium toruloides MTCC 457. Eukaryot Cell 11:1083–1084. https://doi.org/10.1128/EC.00156-12. (PMID: 10.1128/EC.00156-12228588283416060) Kurosawa K, Laser J, Sinskey AJ (2015) Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors. Biotechnol Biofuels 8:76. https://doi.org/10.1186/s13068-015-0258-3. (PMID: 10.1186/s13068-015-0258-3260523444456722) Liu Z, Radi M, Mohamed ETT, Feist AM, Dragone G, Mussatto SI (2021) Adaptive laboratory evolution of Rhodosporidium toruloides to inhibitors derived from lignocellulosic biomass and genetic variations behind evolution. Bioresour Technol 333:125171. https://doi.org/10.1016/j.biortech.2021.125171. (PMID: 10.1016/j.biortech.2021.12517133894448) Lopes HJS, Bonturi N, Kerkhoven EJ, Miranda EA, Lahtvee P-J (2020a) C/N ratio and carbon source-dependent lipid production profiling in Rhodotorula toruloides. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-020-10386-5. (PMID: 10.1007/s00253-020-10386-5324883127044259) Lopes HJS, Bonturi N, Miranda EA (2020b) Rhodotorula toruloides single cell oil production using Eucalyptus urograndis hemicellulose hydrolysate as a carbon source. Energies 13. https://doi.org/10.3390/en13040795. Matsakas L, Novak K, Enman J, Christakopoulos P, Rova U (2017) Acetate-detoxification of wood hydrolysates with alkali tolerant Bacillus sp. as a strategy to enhance the lipid production from Rhodosporidium toruloides. Bioresour Technol 242:287–294. https://doi.org/10.1016/J.BIORTECH.2017.04.002. (PMID: 10.1016/J.BIORTECH.2017.04.00228412146) Meesters PAEP, Huijberts GNM, Eggink G (1996) High-cell-density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl Microbiol Biotechnol 45:575–579. https://doi.org/10.1007/s002530050731. (PMID: 10.1007/s002530050731) Ministério de Minas e Energia (2019) (MME). https://www.gov.br/mme/pt-br . Accessed 11 Oct 2020. Nam H, Conrad TM, Lewis NE (2011) The role of cellular objectives and selective pressures in metabolic pathway evolution. Curr Opin Biotechnol 22:595–600. https://doi.org/10.1016/j.copbio.2011.03.006. (PMID: 10.1016/j.copbio.2011.03.006214815833173765) Nielsen F, Tomas-Pejo E, Olsson L, Wallberg O (2015) Short-term adaptation during propagation improves the performance of xylose-fermenting Saccharomyces cerevisiae in simultaneous saccharification and co-fermentation. Biotechnol Biofuels 8:219. https://doi.org/10.1186/s13068-015-0399-4. (PMID: 10.1186/s13068-015-0399-4266971084687142) Nigam J (2001) Development of xylose-fermenting yeast Pichia stipitis for ethanol production through adaptation on hardwood hemicellulose acid prehydrolysate. J Appl Microbiol 90:208–215. https://doi.org/10.1046/j.1365-2672.2001.01234.x. (PMID: 10.1046/j.1365-2672.2001.01234.x11168723) OECD/FAO (2016) Agrucultural Outlook - Biofuels. https://doi.org/10.1787/agr_outlook-2016-en . Accessed 24 Sep 2018. Osorio-González CS, Hegde K, Ferreira P, Brar SK, Kermanshahipour A, Soccol CR, Avalos-Ramírez A (2019) Lipid production in Rhodosporidium toruloides using C-6 and C-5 wood hydrolysate: a comparative study. Biomass Bioenerg 130:105355. https://doi.org/10.1016/J.BIOMBIOE.2019.105355. (PMID: 10.1016/J.BIOMBIOE.2019.105355) Palkova Z, Forstova J (2000) Yeast colonies synchronise their growth and development. J Cell Sci 113(Pt 1):1923–1928. (PMID: 10.1242/jcs.113.11.1923) Palmqvist E, Hahn-Hägerdal B (2000a) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33. https://doi.org/10.1016/S0960-8524(99)00161-3. (PMID: 10.1016/S0960-8524(99)00161-3) Palmqvist E, Hahn-Hägerdal B (2000b) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74:17–24. https://doi.org/10.1016/S0960-8524(99)00160-1. (PMID: 10.1016/S0960-8524(99)00160-1) Park Y-K, Nicaud J-M, Ledesma-Amaro R (2018) The engineering potential of Rhodosporidium toruloides as a workhorse for biotechnological applications. Trends Biotechnol 36:304–317. https://doi.org/10.1016/J.TIBTECH.2017.10.013. (PMID: 10.1016/J.TIBTECH.2017.10.01329132754) Patel A, Arora N, Sartaj K, Pruthi V, Pruthi PA (2016) Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses. Renew Sustain Energy Rev 62:836–855. https://doi.org/10.1016/j.rser.2016.05.014. (PMID: 10.1016/j.rser.2016.05.014) Peterson WJ, Evans WR, Lecce E, Bell TA, Etchells JL (1958) Quantitative determination of the carotenoids in yeasts of the genus Rhodotorula. J Bacteriol 75:586–591. (PMID: 10.1128/jb.75.5.586-591.1958) Pienkos PT, Zhang M (2009) Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 16:743–762. https://doi.org/10.1007/s10570-009-9309-x. (PMID: 10.1007/s10570-009-9309-x) Pinheiro MJ, Bonturi N, Belouah I, Miranda EA, Lahtvee P-J (2020) Xylose metabolism and the effect of oxidative stress on lipid and carotenoid production in Rhodotorula toruloides: Insights for future biorefinery. bioRxiv. https://doi.org/10.1101/2020.05.28.121012. Ratledge C (1992) Microbial lipids: commercial realities or academic curiosities. In: Kyle, D and Ratledge C (ed) Industrial Applications of Single Cell Oil, 1st edn. pp 1–15. Ravishankar A, Pupo A, Gallagher JEG (2020) Resistance mechanisms of Saccharomyces cerevisiae to commercial formulations of glyphosate involve dna damage repair, the cell cycle, and the cell wall structure. G3 Genes|Genomes|Genetics 10:2043 LP – 2056. https://doi.org/10.1534/g3.120.401183. Rolland F, Winderickx J, Thevelein JM (2002) Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res 2:183–201. https://doi.org/10.1111/j.1567-1364.2002.tb00084.x. (PMID: 10.1111/j.1567-1364.2002.tb00084.x12702307) Sandberg TE, Salazar MJ, Weng LL, Palsson BO, Feist AM (2019) The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab Eng 56:1–16. https://doi.org/10.1016/J.YMBEN.2019.08.004. (PMID: 10.1016/J.YMBEN.2019.08.004314012426944292) Sitepu I, Selby T, Lin T, Zhu S, Boundy-Mills K (2014a) Carbon source utilization and inhibitor tolerance of 45 oleaginous yeast species. J Ind Microbiol Biotechnol 41:1061–1070. https://doi.org/10.1007/s10295-014-1447-y. (PMID: 10.1007/s10295-014-1447-y248186984526258) Sitepu IR, Garay LA, Sestric R, Levin D, Block DE, German JB, Boundy-Mills KL (2014b) Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnol Adv 32:1336–1360. https://doi.org/10.1016/j.biotechadv.2014.08.003. (PMID: 10.1016/j.biotechadv.2014.08.00325172033) Taherzadeh MJ, Karimi K (2011) Chapter 12 - fermentation inhibitors in ethanol processes and different strategies to reduce their effects. In: Pandey A, Larroche C, Ricke SC, Dussap C-G, Gnansounou EBT-B (eds). Academic Press, Amsterdam, pp 287–311. Xu J, Liu D (2017) Exploitation of genus Rhodosporidium for microbial lipid production. World J Microbiol Biotechnol 33:54. https://doi.org/10.1007/s11274-017-2225-6. (PMID: 10.1007/s11274-017-2225-628220353) Zheng Y, Chi Z, Ahring BK, Chen S (2012) Oleaginous yeast Cryptococcus curvatus for biofuel production: ammonia’s effect. Biomass Bioenerg 37:114–121. https://doi.org/10.1016/J.BIOMBIOE.2011.12.022. (PMID: 10.1016/J.BIOMBIOE.2011.12.022) Zhu LY, Zong M, Wu H (2008) Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresour Technol 99:7881–7885. https://doi.org/10.1016/j.biortech.2008.02.033. (PMID: 10.1016/j.biortech.2008.02.03318394882) Zhu Z, Zhang S, Liu H, Shen H, Lin X, Yang F, Zhou YJ, Jin G, Ye M, Zou H, Zhao ZK (2012) A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun 3:1112. https://doi.org/10.1038/ncomms2112. (PMID: 10.1038/ncomms211223047670) |
| Grant Information: | 152033/2015-7 Conselho Nacional de Desenvolvimento Científico e Tecnológico; 2016/10636-8 Fundação de Amparo à Pesquisa do Estado de São Paulo |
| Contributed Indexing: | Keywords: Adaptive; Biodiesel; Hydrolysate; Inhibitors; Lipids; R. toruloides |
| Substance Nomenclature: | A1TA934AKO (Xylose) |
| SCR Organism: | Rhodotorula toruloides |
| Entry Date(s): | Date Created: 20211111 Date Completed: 20211208 Latest Revision: 20211214 |
| Update Code: | 20250114 |
| DOI: | 10.1007/s00253-021-11687-z |
| PMID: | 34761276 |
| Database: | MEDLINE |
| Abstract: | The oleaginous yeast Rhodotorula toruloides is a potential lipid producer for biodiesel production. However, this yeast shows growth inhibition due to harmful compounds when cultivated in hemicellulose hydrolysate. Here, we present a comparative analysis of colony selection and heterologous adaptive laboratory enhancement (ALE) strategies for obtaining robust strains. We implemented these ALE strategies for R. toruloides in a culture medium containing sugarcane hemicellulose hydrolysate. Our comparison study showed that the strain obtained with heterogeneous ALE strategy (Rth) reached a µ <subscript>max</subscript> of 55% higher than the parental strain. It also exhibited higher biomass production (6.51 g/l) and lipid content (60%). ALE with colony selection strategy (Rtc) had a fitness gain in terms of shortening of the lag phase (9 h) when compared to Rth and parental strain (11.67, 12.33 h, respectively). When cultivated in Eucalyptus urograndis hemicellulose hydrolysate, the Rth strain achieved a high lipid content, 64%. Kinetics studies showed a strong effect of acetic acid as a repressor of xylose consumption during R. toruloides cultivation.Key points• Distinct adaptive laboratory strategies resulted in strains with different physiologies.• Heterologous adaptive laboratory enhancement provided the best results (fitness gain of 55% in µmax).• The Rth strain achieved a lipid content of 64.3% during cultivation in eucalyptus hemicellulose hydrolysate.<br /> (© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.) |
|---|---|
| ISSN: | 1432-0614 |
| DOI: | 10.1007/s00253-021-11687-z |
Full Text Finder
Nájsť tento článok vo Web of Science