Boundary Stabilization of a Class of Coupled Hyperbolic‐Parabolic PDE Systems.

Gespeichert in:
Bibliographische Detailangaben
Titel: Boundary Stabilization of a Class of Coupled Hyperbolic‐Parabolic PDE Systems.
Autoren: Guo, Qing1 (AUTHOR), Jin, Feng‐Fei1 (AUTHOR) jinfengfei@amss.ac.cn
Quelle: Mathematical Methods in the Applied Sciences. Dec2025, p1. 15p. 4 Illustrations.
Schlagwörter: *BACKSTEPPING control method, *EXPONENTIAL stability, *LYAPUNOV functions, *HYPERBOLIC differential equations, *STATE feedback (Feedback control systems), *DYNAMICAL systems
Abstract: ABSTRACT This paper considers the boundary state‐feedback stabilization problem of a novel hyperbolic‐parabolic coupled system, which exhibits not only boundary coupling but also complex internal coupling terms. By employing the backstepping method, the original system is transformed into a chosen target system, and two boundary feedback control laws are proposed. Exponential stability in the L2$$ {L}^2 $$ norm of the target system is established through the construction of an appropriate Lyapunov function. The effectiveness of the controller is demonstrated through a numerical simulation. [ABSTRACT FROM AUTHOR]
Datenbank: Academic Search Index
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:asx&genre=article&issn=01704214&ISBN=&volume=&issue=&date=20251218&spage=1&pages=1-15&title=Mathematical Methods in the Applied Sciences&atitle=Boundary%20Stabilization%20of%20a%20Class%20of%20Coupled%20Hyperbolic%E2%80%90Parabolic%20PDE%20Systems.&aulast=Guo%2C%20Qing&id=DOI:10.1002/mma.70385
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Guo%20Q
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: asx
DbLabel: Academic Search Index
An: 190295921
RelevancyScore: 1452
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1452.15173339844
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Boundary Stabilization of a Class of Coupled Hyperbolic‐Parabolic PDE Systems.
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Guo%2C+Qing%22">Guo, Qing</searchLink><relatesTo>1</relatesTo> (AUTHOR)<br /><searchLink fieldCode="AR" term="%22Jin%2C+Feng‐Fei%22">Jin, Feng‐Fei</searchLink><relatesTo>1</relatesTo> (AUTHOR)<i> jinfengfei@amss.ac.cn</i>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <searchLink fieldCode="JN" term="%22Mathematical+Methods+in+the+Applied+Sciences%22">Mathematical Methods in the Applied Sciences</searchLink>. Dec2025, p1. 15p. 4 Illustrations.
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: *<searchLink fieldCode="DE" term="%22BACKSTEPPING+control+method%22">BACKSTEPPING control method</searchLink><br />*<searchLink fieldCode="DE" term="%22EXPONENTIAL+stability%22">EXPONENTIAL stability</searchLink><br />*<searchLink fieldCode="DE" term="%22LYAPUNOV+functions%22">LYAPUNOV functions</searchLink><br />*<searchLink fieldCode="DE" term="%22HYPERBOLIC+differential+equations%22">HYPERBOLIC differential equations</searchLink><br />*<searchLink fieldCode="DE" term="%22STATE+feedback+%28Feedback+control+systems%29%22">STATE feedback (Feedback control systems)</searchLink><br />*<searchLink fieldCode="DE" term="%22DYNAMICAL+systems%22">DYNAMICAL systems</searchLink>
– Name: Abstract
  Label: Abstract
  Group: Ab
  Data: ABSTRACT This paper considers the boundary state‐feedback stabilization problem of a novel hyperbolic‐parabolic coupled system, which exhibits not only boundary coupling but also complex internal coupling terms. By employing the backstepping method, the original system is transformed into a chosen target system, and two boundary feedback control laws are proposed. Exponential stability in the L2$$ {L}^2 $$ norm of the target system is established through the construction of an appropriate Lyapunov function. The effectiveness of the controller is demonstrated through a numerical simulation. [ABSTRACT FROM AUTHOR]
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=asx&AN=190295921
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1002/mma.70385
    Languages:
      – Code: eng
        Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 15
        StartPage: 1
    Subjects:
      – SubjectFull: BACKSTEPPING control method
        Type: general
      – SubjectFull: EXPONENTIAL stability
        Type: general
      – SubjectFull: LYAPUNOV functions
        Type: general
      – SubjectFull: HYPERBOLIC differential equations
        Type: general
      – SubjectFull: STATE feedback (Feedback control systems)
        Type: general
      – SubjectFull: DYNAMICAL systems
        Type: general
    Titles:
      – TitleFull: Boundary Stabilization of a Class of Coupled Hyperbolic‐Parabolic PDE Systems.
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Guo, Qing
      – PersonEntity:
          Name:
            NameFull: Jin, Feng‐Fei
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 18
              M: 12
              Text: Dec2025
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 01704214
          Titles:
            – TitleFull: Mathematical Methods in the Applied Sciences
              Type: main
ResultId 1