Analyzing diffusive vegetation-sand model: Instability, bifurcation, and pattern formation.

Uložené v:
Podrobná bibliografia
Názov: Analyzing diffusive vegetation-sand model: Instability, bifurcation, and pattern formation.
Autori: Guo, Gaihui1 (AUTHOR) guogaihui@sust.edu.cn, Zhang, Xinyue1 (AUTHOR), Li, Jichun1,2 (AUTHOR), Wei, Tingting1 (AUTHOR)
Zdroj: Electronic Research Archive. 2025, Vol. 33 Issue 9, p1-31. 31p.
Predmety: *NEUMANN boundary conditions, *VEGETATION patterns, *BIFURCATION theory, *EIGENVALUES, *COMPUTER simulation
Abstrakt: In this study, we explored a diffusive vegetation-sand model with Neumann boundary conditions, investigating the role of Turing instability in vegetation pattern formation. A priori estimates for steady-state solutions were established using the maximum principle and Poincaré inequality. Bifurcation analysis was performed for simple and double eigenvalue cases. By employing bifurcation theory, a local bifurcation was extended globally, and the direction of bifurcation was characterized. Double eigenvalue cases were analyzed through spatial decomposition and the implicit function theorem. Finally, numerical simulations validated and complemented the theoretical results. [ABSTRACT FROM AUTHOR]
Databáza: Academic Search Index
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:asx&genre=article&issn=26881594&ISBN=&volume=33&issue=9&date=20250901&spage=1&pages=1-31&title=Electronic Research Archive&atitle=Analyzing%20diffusive%20vegetation-sand%20model%3A%20Instability%2C%20bifurcation%2C%20and%20pattern%20formation.&aulast=Guo%2C%20Gaihui&id=DOI:
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Guo%20G
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: asx
DbLabel: Academic Search Index
An: 188760734
RelevancyScore: 1430
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1430.48913574219
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Analyzing diffusive vegetation-sand model: Instability, bifurcation, and pattern formation.
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Guo%2C+Gaihui%22">Guo, Gaihui</searchLink><relatesTo>1</relatesTo> (AUTHOR)<i> guogaihui@sust.edu.cn</i><br /><searchLink fieldCode="AR" term="%22Zhang%2C+Xinyue%22">Zhang, Xinyue</searchLink><relatesTo>1</relatesTo> (AUTHOR)<br /><searchLink fieldCode="AR" term="%22Li%2C+Jichun%22">Li, Jichun</searchLink><relatesTo>1,2</relatesTo> (AUTHOR)<br /><searchLink fieldCode="AR" term="%22Wei%2C+Tingting%22">Wei, Tingting</searchLink><relatesTo>1</relatesTo> (AUTHOR)
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <searchLink fieldCode="JN" term="%22Electronic+Research+Archive%22">Electronic Research Archive</searchLink>. 2025, Vol. 33 Issue 9, p1-31. 31p.
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: *<searchLink fieldCode="DE" term="%22NEUMANN+boundary+conditions%22">NEUMANN boundary conditions</searchLink><br />*<searchLink fieldCode="DE" term="%22VEGETATION+patterns%22">VEGETATION patterns</searchLink><br />*<searchLink fieldCode="DE" term="%22BIFURCATION+theory%22">BIFURCATION theory</searchLink><br />*<searchLink fieldCode="DE" term="%22EIGENVALUES%22">EIGENVALUES</searchLink><br />*<searchLink fieldCode="DE" term="%22COMPUTER+simulation%22">COMPUTER simulation</searchLink>
– Name: Abstract
  Label: Abstract
  Group: Ab
  Data: In this study, we explored a diffusive vegetation-sand model with Neumann boundary conditions, investigating the role of Turing instability in vegetation pattern formation. A priori estimates for steady-state solutions were established using the maximum principle and Poincaré inequality. Bifurcation analysis was performed for simple and double eigenvalue cases. By employing bifurcation theory, a local bifurcation was extended globally, and the direction of bifurcation was characterized. Double eigenvalue cases were analyzed through spatial decomposition and the implicit function theorem. Finally, numerical simulations validated and complemented the theoretical results. [ABSTRACT FROM AUTHOR]
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=asx&AN=188760734
RecordInfo BibRecord:
  BibEntity:
    Languages:
      – Code: eng
        Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 31
        StartPage: 1
    Subjects:
      – SubjectFull: NEUMANN boundary conditions
        Type: general
      – SubjectFull: VEGETATION patterns
        Type: general
      – SubjectFull: BIFURCATION theory
        Type: general
      – SubjectFull: EIGENVALUES
        Type: general
      – SubjectFull: COMPUTER simulation
        Type: general
    Titles:
      – TitleFull: Analyzing diffusive vegetation-sand model: Instability, bifurcation, and pattern formation.
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Guo, Gaihui
      – PersonEntity:
          Name:
            NameFull: Zhang, Xinyue
      – PersonEntity:
          Name:
            NameFull: Li, Jichun
      – PersonEntity:
          Name:
            NameFull: Wei, Tingting
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 09
              Text: 2025
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 26881594
          Numbering:
            – Type: volume
              Value: 33
            – Type: issue
              Value: 9
          Titles:
            – TitleFull: Electronic Research Archive
              Type: main
ResultId 1