基于密度聚类与匹配算法的异常飞行行为挖掘.

Uloženo v:
Podrobná bibliografie
Název: 基于密度聚类与匹配算法的异常飞行行为挖掘.
Alternate Title: Abnormal Flight Behavior Mining Based on Density Clustering and Matching Algorithm.
Autoři: 吴欣蓬1, 汤新民1 tangxinmin@nuaa.edu.cn, 毛继志2, 郭鸿滨2, 管祥民3
Zdroj: Journal of Nanjing University of Aeronautics & Astronautics / Nanjing Hangkong Hangtian Daxue Xuebao. Dec2021, Vol. 53 Issue 6, p863-871. 9p.
Témata: *TRACKING algorithms, *DECISION making, *ALTITUDES, *SCALABILITY, *MINES & mineral resources
Abstract (English): As air traffic has become increasingly congested,the effective mining of abnormal flight behaviors can assist controllers to make decisions. Current methods can only identify abnormal spatial positions with limited horizontal scalability. This paper incorporates four abnormal characteristics,position,speed,altitude and heading,and improves the density-based spatial clustering of applications with noise(DBSCAN)by the altitude level division strategy,the local outlier factor and the faster cover tree. Then,the density clustering algorithm named density-based spatial clustering considering speed,direction and high level improved by local outlier factor(LOFDBSC-SDH) is proposed to effectively extract the normal track patterns of airplanes. Next,based on the normal track patterns,a track matching algorithm is designed to mine abnormal flight behavior patterns,including flights’cross-point time and above abnormal features. Finally,the effectiveness of the proposed scheme is verified by the experimental simulation. [ABSTRACT FROM AUTHOR]
Abstract (Chinese): 在空中交通愈加拥挤的背景下,航空器的异常飞行行为的有效挖掘可以辅助管制员进行调配决策。现有方法 只能辨识飞机空间位置特征异常,存在水平可扩展性的局限。本文考虑位置、速度、高度和航向 4个异常特征,采用高 度层划分策略、局部异常因子和快速覆盖树对基于密度的有噪声应用中的空间聚类(Density‑based spatial clustering of applications with noise,DBSCAN)方法进行改进,提出局部异常因子改进的考虑速度、方向及高度的基于密度聚类 方 法(Density ‑ based spatial clustering considering speed,direction and high level improved by local outlier factor, LOFDBSC‑SDH)密度聚类算法对正常航迹模式进行快速准确提取。然后,基于正常航迹模式设计考虑过点时间和 上述异常特征的航迹匹配算法,挖掘异常飞行行为。最后,通过实验仿真验证了本文方法的有效性和应用价值。 [ABSTRACT FROM AUTHOR]
Databáze: Academic Search Index
Buďte první, kdo okomentuje tento záznam!
Nejprve se musíte přihlásit.